

The Impact of Energy Price Changes on New Mexico State Revenue

Investigator: Xiaoyang Wang

Research assistants: Rashmi Dhakal, Daniel Dolman, Jason Sanchez Hernandez

Research for a Better New Mexico, Academic Year 2024-2025

Acknowledgments

- Legislative support
- Reviewer: Robert Berrens
- UNM Economics staff and Research for a Better New Mexico Committee
- New Mexico state economists Leonardo Delgado, Michael Morrison, Lucinda Sydow, Ismael Torres and their teams for providing data and helpful discussion in conducting this project

In 2024, NM produced

- 678 million barrels crude oil
- 2.5 billion MMbtu natural gas
- ~\$10.5 billion revenue to the state in fiscal 2024
- Oil price ~ \$70-\$90/barrel, gas price ~ \$1.5-\$3.1/MMbtu

Monthly state revenue from oil and gas production

FEATURED

When does New Mexico need to start worrying about crude oil prices?

By Megan Gleason / Journal Business Editor Apr 13, 2025 Updated Apr 13, 2025
2 min to read

Lagged price impact to NM

DEPARTMENT OF ECONOMICS

Other sources of market shocks

Price impact

Research Question

- For a 1% change in crude oil and natural gas price, what's the impact on NM state revenue
 - Dynamic impact in the 12 24 months horizon
 - Direct revenues from oil/gas production, monthly royalties and value-based taxes
 - emergency school tax (3.15% for crude oil and 4.00% for natural gas)
 - severance tax (3.75%)
 - conservation tax (0.19% for natural gas and 0.19% 0.24% for crude oil)
 - ad valorem production tax (150% of assessed value times local tax rate averaging 1.3%)
 - Indirect revenues
 - Gross receipts and personal income taxes

How to model the dynamics

Production volume and price are commonly modeled as a lag dependent VAR system

$$\log(volume_t) = a_0 + \sum_{j=1}^k a_{1j} \log(volume_{t-j}) + \sum_{j=1}^k a_{2j} \log(price_{t-j}) + e_{1t}$$
$$\log(price_t) = b_0 + \sum_{j=1}^k b_{1j} \log(volume_{t-j}) + \sum_{j=1}^k b_{2j} \log(price_{t-j}) + e_{2t}$$

Summing both equations:

$$\log(volume_t \times price_t) = c_0 + \sum_{j=1}^k c_{1j} \log(volume_{t-j}) + \sum_{j=1}^k c_{2j} \log(price_{t-j}) + e_t$$

• Because $revenue_t = rate \times volume_t \times price_t$

$$\log(revenue_t) = c_0 + \log(rate) + \sum_{j=1}^k c_{1j} \log \left(volume_{t-j}\right) + \sum_{j=1}^k c_{2j} \log \left(price_{t-j}\right) + e_t$$

Data sources

Monthly data

- TRD
 - Oil and gas production volume
 - Total revenues: royalties + taxes
- LFC
 - Major categories like gross receipts, and income taxes
- Other sources:
 - Futures prices of oil and natural gas,
 - CPI, inflation adjusted

Cumulative impact of a 1% price change on crude oil and natural gas revenue

Cumulative impact of a 1% price change on gross receipts and personal income taxes

An application on state revenue forecast

	Crude oil	Natural Gas
Baseline volume	750 million barrels	2.75 billion MMBtu
Baseline price	\$63/barrel	\$4/MMBtu
Revenue rate	19%	16%
Baseline revenue	\$8.98 billion	\$1.76 billion
Price change	+3%	+3%
Impact horizon		
1 month	$+3 \times 0.63\% = 1.89\%$	$+3 \times 0.70\% = 2.1\%$
	$\$8.98/12 \times 1.89\% = \0.014 billion	$1.76/12 \times 2.1\% = 0.003$ billion
6 months	$+3 \times 0.39\% = 1.17\%$	$+3 \times 0.76\% = 2.28\%$
	$\$8.98/2 \times 1.17\% = \0.053 billion	$1.76/2 \times 2.28\% = 0.020$ billion
12 months	$+3 \times 0.52\% = 1.56\%$	$+3 \times 0.43\% = 1.29\%$
	\$8.98 × 1.56%=\$0.140 billion	\$1.76 × 1.29%=\$0.023 billion

Thank you! xiaoyang@unm.edu

Supplemental charts

Monthly NM Crude Oil and Natural Gas Production and Price

TRD volume and value data Oil

TRD volume and value data Natural Gas

TRD volume/value data, NG royalty

TRD value/volume data

