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Picture A: Landscape view across schoolyard with pumpjacks in background. Source: Google 

Map view of Denver City, TX downloaded July 13, 2023 

 

 
Picture B: Aerial view of city and surrounding area with wellpad areas in white. Source: Google 

Map view of Denver City, TX downloaded July 13, 2023 



 3 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY 5 

1. INTRODUCTION 7 

2. BACKGROUND INFORMATION 9 

2.1. BACKGROUND ON THE OIL AND GAS BOOM IN THE PERMIAN BASIN 9 

2.2. ECONOMIC IMPACTS OF OIL AND GAS BOOMS 10 

2.3. BACKGROUND ON HEDONIC PRICING METHOD 12 

2.3.a. Selection of the Price or Value Variable in an HPM Analysis 13 

2.3.b. Review of HPM Studies Using Zillow Price Data 15 

2.3.c. Review of Prior HPM Housing Studies on the Effects of Oil and Gas Booms 15 

2.4. OIL AND GAS PRODUCTION IMPACTS ON AIR QUALITY 17 

3. CONCEPTUAL FRAMEWORK 19 

4. DATA COLLECTION 20 

4.1. STRUCTURAL CHARACTERISTICS 22 

4.2. LOCATION CHARACTERISTICS 22 

4.3. O&G WELL VARIABLES 23 

4.4. ENVIRONMENTAL EFFECTS VARIABLES 24 

4.5. SUMMARY STATISTICS 24 

5. ECONOMETRIC MODELING APPROACH 26 

6. ECONOMETRIC RESULTS AND ANALYSIS 28 

6.1. FULL SAMPLE RESULTS 29 

6.2. SUBSAMPLE RESULTS 31 

6.3. ZESTIMATE RESULTS 32 

6.4. CONLEY STANDARD ERRORS 33 

6.5. PIPED WATER AND WATER CONTAMINATION RISKS FROM INJECTION AND DISPOSAL WELLS

 33 

7. DISCUSSION AND CONCLUSIONS 34 

8. REFERENCES 41 

9. FIGURES 55 

10. TABLES 70 

11. APPENDICES 92 

 

 

 

 

 



 4 

List of Figures 

Figure 1: Oil production in the Permian Basin in millions of barrels of oil (MMbbl) 55 

Figure 2: Natural gas production in the Permian Basin in trillions of cubic feet (TCF) 56 

Figure 3: Annual Revenue from oil and gas produced in the Permian Basin. 57 
Figure 4: Distribution of average annual employment level location quotient of NAICS 21 (mining, 

quarrying, and oil and gas extraction) in NM and TX for 2009 (pre-boom) 58 

Figure 5: Distribution of average annual employment level location quotient of NAICS 21 (mining, 

quarrying, and oil and gas extraction) in NM and TX for 2022 (during-boom) 59 

Figure 6: Distribution of the sample housing units with a LISTPRICE geolocated in the selection 

region 60 

Figure 7: Distribution of sample housing units with a ZESTIMATE geolocated in the selection 

region 61 

Figure 8: Delineation of public water service areas for NM and TX 62 

Figure 9: Construction of well count densities from various distances from a house 63 
Figure 10:  Oil and gas wells in the Permian basin and surrounding region 64 

Figure 11: Injection and disposal wells in the Permian Basin and surrounding region 65 

Figure 12: Distribution of both oil and gas, and injection and disposal wells in Denver City TX, with 

representative 2km buffer around geolocated houses 66 

Figure 13: Distribution of earthquakes greater than magnitude 1 and 3 on the Richter scale from 

1/1/2010-4/4/2023 67 

Figure 14:  PM2.5 concentration levels by year from 2010-2020 in the Permian Basin 68 

Figure 15: Change in PM2.5 concentrations for 2017 due to oil and gas emissions originating in the 

Permian Basin (ΔPM2.5) 69 

 
List of Tables 

Table 1: Employment Metrics 70 

Table 2: Select Price or Value Information Used in Hedonic Pricing Housing Studies 71 

Table 3: Description of the Structural Variables and Housing Characteristics 72 

Table 4: Description of Location Variables 73 

Table 5: Description of Environmental Quality Variables 74 

Table 6: Description of Well Variables 75 

Table 7: Select Past Research Using HPM with Oil and Gas Development 76 

Table 8: Description of Alternative Dependent Variables 77 
Table 9: Price Variables Summary Statistics 78 

Table 10: Structural Variables Summary Statistics 79 

Table 11: Location Variables Summary Statistics 80 

Table 12: Well Variable Summary Statistics 81 

Table 13: Environmental Quality Summary Statistics 82 

Table 14: Base Models, and Well Density (N=5,767) 83 

Table 15: Extended Models (N=5,767) 84 

Table 16: Permian Counties Sample Only (N=3,602) 85 

Table 17: Control Counties Sample Only (N=2,165) 86 

Table 18: Base Models and Well Density with lnZESTIMATE (N=2,601) 87 
Table 19: Extended Models with lnZESTIMATE (N=2,601) 88 

Table 20: Base Models and Well Density with Conley Standard Errors (N=5,767) 89 

Table 21: Extended Models with Conley Standard Errors (N=5,767) 90 

Table 22: Water Source and Injection/Disposal Wells 91 

 



 5 

Executive Summary 

 

While oil was first discovered in the Permian Basin in the early 1920s (Vertress, 2019), the most 

recent production boom began in 2010. Lasting now more than a dozen years, the boom has been 

driven by changes in production technology that allowed producers to apply unconventional oil 

and gas (UO&G) technology (horizontal drilling and hydraulic fracturing) with the layered 

geology of the Permian Basin (Maniloff & Mastromonaco, 2017; Popova, 2020; Popova & Long, 

2021). In relative terms, the boom in the Permian, composed of parts of New Mexico (NM) and 

Texas (TX), represents one of the most cost-effective and productive oil fields in the world. The 

boom has generated significant in-migration, employment, earnings, and tax revenues. Currently, 

the oil and gas (O&G) industry constitutes an estimated 8% of U.S. GDP (Pricewaterhouse 

Coopers, 2021). For TX and NM, the O&G industry contributed 10.8% and 11.1% of each 

state’s 2022 GDP, respectively, driven significantly by the Permian boom (Bureau of Economic 

Analysis, 2023). NM is highly reliant on the industry as it contributes approximately 35% of 

state budget revenue (NMOGA, 2021).  

Played out over time, the policy context of a boom centers on balancing the benefits of increased 

earnings, employment, and public revenues against the environmental damages from UO&G 

development (Maniloff & Mastromonaco, 2017), and whether there is any localized “resource 

curse” attached to future economic development in the extractive region. As part of that larger 

context and given that housing markets aggregate and monetize the preferences of buyers and 

sellers, as well as capitalize present values, changes in housing prices due to UO&G 

development are important reflections of the community perceptions of these tradeoffs in 

benefits and damages (Krupnick & Egarthe, 2017).  

The objective of this analysis is to examine whether and to what degree some of the effects of the 

boom, such as well drilling and associated environmental effects, are being capitalized into the 

regional housing market. To econometrically isolate such effects on housing values, while 

controlling for other factors, the hedonic pricing method (HPM) is employed. A sample of more 

than 6,000 individual residential properties are collected for a nine-month period in 2022-2023, 

drawn from both the 55 counties of the Permian, and a set of 18 control counties in eastern NM 

and western TX. Since both are sales price non-disclosure states, houses listed for sale on Zillow 

are webscraped to obtain estimated price and structural housing characteristics (e.g., bedrooms, 

bathrooms). Each residential property is geolocated and paired with location attributes (e.g., 

population density, public water availability, unemployment rates) from the Census Bureau and 

other governmental data sources. Spatial data is collected on environmental effects (air quality, 

and earthquakes) connected to the boom in unconventional (UO&G) development. This includes 

unique modeling results (Goodkind et al., 2023), to isolate both fine particulate matter (PM2.5) 

concentrations, as well as the increment attributable to O&G production. Spatially detailed data 

on more than 220,000 (active) wells is obtained from both NM and TX and used to generate well 

count density measures for various buffers around each house. Lastly, the analysis is unique in 

treating the region wholistically (both NM and TX) with a carefully selected set of control 

counties. 
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From this initial analysis, key econometric findings from estimated hedonic price functions are: 

 

- While there has been significant in-migration and positive earnings effects over the last 

decade in the Permian, with related housing market pressures (Collins, 2021), sampled 

homes in the Permian are listed 22-24% less on average than in control counties. 

- Manufactured homes represent about only one in twenty of listings overall (and in each 

of the control and Permian counties samples).  They are shown to be a significant 

negative determinant of house values; but this reduction in value is 45% in the control 

counties versus only 22% in the Permian. 

- With respect to potential negative externalities on listed prices, results demonstrate that 

effects are either greatly reduced inside the Permian, relative to the control counties, or 

have no significant effect. The latter case includes the frequency of earthquakes. 

- Evidence of how the Permian region may be tolerating the side effects of the UO&G 

boom is seen in the well density results. Overall sample results show that increased well 

density within 2 km of a house has a negative effect on the listed price, but the effect is 

greatly muted inside the Permian. For the control counties with an average of less than 

one well near each house, the negative effective is -0.82% for an additional well ($2,951 

reduction evaluated at median price for sub-sample). In contrast, for the Permian counties 

with an average of about 15 wells near each house, the estimated effect of well density on 

the listed price is -0.12% for an additional well -$293 reduction evaluated at median price 

for sub-sample).  When modeling the Permian counties sub-sample separately, results 

cannot reject the null hypothesis that well density has no effect on listed price.  

- Using recent regional research (Goodkind et al., 2023) allows the unique ability to isolate 

the change in the air quality attributable to O&G. PM2.5 concentrations in the region 

originating from all sources are found to be a statistically significant negative amenity for 

housing values in the Permian, with modest marginal effect. [The area is within 

attainment status for federal air quality standards for PM2.5.] However, the change in air 

pollution (ΔPM2.5) specifically attributable to O&G production in the Permian is not 

shown to be a statistically significant determinant of housing values in the Permian. 

- Controlling for homes within a public water service boundary (i.e., likely to be on piped 

water), results show this indicator variable to always be a significant positive determinant 

of listed price (e.g., 4.5-5% higher in the full sample, but roughly 3% in Permian counties 

versus 7% in control counties). Further results show that density of injection and disposal 

wells—of particular concern for water pollution risks with UO&G—is not a significant 

externality when controlling for whether a house is within an area with piped water 

(roughly 85% in either sample).  

 

Econometric results investigating the residential housing market in the Permian are consistent 

with the argument that a region with significant prior exposure to conventional O&G 

development, and now highly dependent on UO&G production, may exhibit a tolerance of the 

side effects. The paper closes with a discussion of policy implications—e.g., public data 

availability (including housing sales price disclosure), environmental monitoring, legacy 

environmental costs, risks of a localized resource curse, and potential mitigation measures. 
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1. Introduction 

 

“It feels like this (ban) is just another chance for Santa Fe elites to push policy for 

political reasons, instead of looking for input from those living in that area.” 

 

State Senator David Gallegos (R-District 41 [Eddy and Lea Counties]) (McKay, 2023) 

 

Understanding trade-offs between environmental effects and income generation (including 

public revenue from royalties, leases, and taxes) in an oil and gas (O&G) production boom is 

complicated and made more so by differing regional perspectives. There is inherent complexity 

in weighing the costs and benefits of a boom (Covert & Sweeney, 2023). Such complexity is 

reflected in responses to recent regulatory action by the state of New Mexico (state capitol in 

Santa Fe) affecting the O&G leases so prevalent in southeastern NM (part of the Permian Basin). 

Driven by technological changes connected to hydraulic fracking, and massive capital 

investment into the region (Collins, 2021), O&G production has been booming in the Permian 

Basin for the last decade (Ball & Lowy, 2018; Popova & Long, 2021; Thompson, 2022). 

 

On June 1st, 2023, NM State Lands Commissioner Stephanie Garcia Richard signed an executive 

order banning new O&G leases on state trust lands, within one mile of a school (McKay, 2023). 

Pertaining only to state lands (not federal, tribal, or private), the order was expected to affect 

more than 100 schools in NM’s portion of the Permian. The order came with a directive to assess 

environmental compliance for existing O&G wells on state lands near schools. Through the 

commissioner, the order reflects concern by the State to protect against a presumed negative 

environmental externality—significant economic damages not accounted for in a transaction 

(e.g., an O&G lease). The expressed purpose was to “protect children’s health” (McKay, 2023). 

Separate from concerns over broader climate damages from greenhouse gases, from both the 

production and consumption of O&G, such health damages from O&G extraction and transport 

are connected to air pollution emissions (e.g., Ozone and PM2.5). Recently, Goodkind et al. 

(2023) estimated the monetary damages from PM2.5 emissions by isolating emissions attributable 

to O&G production in the Permian. Such external health effects have been found elsewhere for 

fracking booms (see Collins, 2021). As noted by Covert and Sweeney (2023): 

 

There is now robust evidence of large negative externalities from fracking... These costs, 

most of which are local, must be evaluated against the (ideally local) benefits generated 

by fracking.  

 

As elsewhere (e.g., Ericson et al., 2020), the juxtaposition of relative tradeoffs—financial vs. 

environmental—is clear in New Mexico. The moratorium was described as just the first step in 

reducing environmental impacts near schools. Extending concern from schools and children to 

where people live more generally, a spokesperson for the NM Environment Department 

concurrently said that current state rules on air pollution emissions (e.g., ozone precursors) from 

O&G required “enhanced monitoring around occupied dwellings.” (McKay, 2023). 2  Such 

 
2 The benefit-cost tradeoffs play out spatially between buildings and the density and distribution of well drilling for 

hydraulic fracking. Spatial setbacks are a common regulatory tool for attempting to reduce exposure and mitigate 

some of the localized environmental effects of O&G development (air, water and noise pollution, industrial 

accidents etc.).  They can be implemented for schools, residences, parks, protected sites etc. To wit, as the state of 
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concern came while O&G production was near record annual highs in the ongoing boom in the 

Permian Basin (McKay, 2023). As the state of NM moved forward with plans to transition to 

renewable energy resources,3 the associated public revenues from royalties, leases and taxes on 

O&G extraction and production was estimated to account for roughly 40% of state public finance 

revenues (McKay, 2023).  

 

Generally, the June 2023 NM new-lease moratorium near schools was supported by the 

environmental community and questioned by the O&G industry (McKay, 2023); the logic of the 

setback distance was questioned against potential loss of O&G revenues for the state (Editorial 

Board, Albuquerque Journal, 2023). As reflected in the epigraph, public sentiment in 

southeastern NM would not necessarily be supportive of additional environmental regulation of 

O&G activities in an extraction intensive region like the Permian. As noted in a recent review, 

there is accumulating evidence (e.g., Campbell et al., 2020) that communities deeply connected 

to O&G “tolerate the side effects” (i.e., negative externalities). As Collins (2021, p. 20) 

summarizes:  

 

[C]ommunities with a high economic reliance on oil and gas production tended to have a 

strong attachment to the industry, with many residents willing to accept a substantial 

degree of negative externalities in exchange for the economic benefits generated by oil 

and gas activity in the area – and often, for them personally or family and friends. 

 

Against this context, with sometimes highly vocal public discourse, we explore an empirical 

question: How are environmental effects being capitalized (or not) into regional housing markets 

in the booming Permian Basin? Housing markets, both permanent and temporary, have been 

significantly impacted by the O&G production boom in the Permian (Collins, 2021). With a 

restricted focus on the market for more permanent dwellings, the objective of this study is to 

investigate the relative effects of economic and environmental factors on housing markets in the 

Permian Basin (southeastern NM and western Texas (TX)). Complicating our investigation is 

both NM and TX are real estate sales price non-disclosure states (i.e., not publicly available 

information). Using a unique data set of individual house values and characteristics, matched 

with a wide variety of geospatial data, we pursue this objective using the hedonic pricing method 

(HPM). Data is collected across the 55 counties defined as in the Permian Basin and a selected 

control set of 18 nearby regional counties outside the production basin. The HPM allows 

econometric decomposition of observed variation in house values to estimate the marginal 

implicit value of various environmental effects (e.g., seismic activity, well density and air 

pollution emissions).  

 

 
NM announced their ban on new leases on state withing one mile of schools (McKay, 2023), the federal Department 

of Interior announced a withdrawal from O&G leasing of public lands within a 10-mile radius of Chaco Culture 

National Historic Park in New Mexico (U.S. Department of Interior, 2023). Standard O&G setbacks from buildings 

vary across states but tend to be 200-1000 ft (Ericson et al., 2020). In TX, OG setbacks are 200 ft, while in NM 

these are administered at the local or county level (Ericson et al., 2020). Ericson et al. (2020) examine the foregone 

revenues of resource unavailability of setbacks for recent CO proposals, they estimate that expanding from a 500 ft 

to a 2,500 ft O&G setback from buildings would generate $4.4B in revenue losses over 10 years in CO.  
3 NM’s Energy Transition Act of 2019 sets renewable energy standards of 50% (80%) by 2030 (2040) for NM 

electricity providers (Senate Bill 489, 2019). 
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Preliminary econometric results are consistent with the argument that regions that are highly 

dependent on O&G production activities, develop or exhibit a tolerance of the side effects, i.e. no 

evidence of a significant negative effect in the Permian Basin is seen for earthquakes, well 

density, or the change in air pollution (i.e., PM2.5) attributable to oil and gas production. This 

conclusion is stable across a variety of robustness checks. 

2. Background Information 

 

2.1. Background on the Oil and Gas Boom in the Permian Basin 

Southeastern New Mexico and West Texas house the Permian Basin (“the basin”), a major oil 

and natural gas producing area encompassing over 81,000 square miles (The County Information 

Program, Texas Association of Counties, 2020; U.S. Census Bureau, 2021). The basin takes its 

name from the Permian geological era that occurred over 250 million years ago (Dancy, 2018). 

The area is currently the largest oil producing region in the U.S. (U.S. Energy Information 

Administration (EIA), 2023a).  As of April 2022, the basin produced 43.6% of the nation’s crude 

oil and 16.7% of natural gas output (Federal Reserve Bank of Dallas, 2022). This starkly 

contrasts to 2008 levels when the Permian produced only 16.4% of the country’s oil and 7.1% of 

the natural gas (Gilmer & James, 2008). For comparison, in the June 2023 Energy Information 

Administration’s productivity report the Permian produces over 5 million barrels of oil (bbl) 

daily while the second highest U.S. basin, the Bakken Basin in Montana and North Dakota 

produces 1.2 million bbl daily (EIA, 2023b). 

Oil was first discovered in the Permian in the early 1920s (Vertress, 2019). The most recent large 

production boom began roughly in 2010-2012. With consistent growth over more than a decade, 

the Permian is currently considered one of the most prolific unconventional oil and gas 

producing regions in the world (Popova & Long, 2021). While an umbrella term, we follow 

Maniloff and Mastromonaco (2017) in referring to unconventional oil and gas (UO&G) 

development as targeting oil and natural gas deposited in formations that require the use of 

horizontal drilling and hydraulic fracturing (or fracking) for profitable production.  

The boom in UO&G production in the Permian (and elsewhere in the US) has been spurred by 

technological advances in horizontal drilling (including significant increases in number and 

length of the horizontal laterals),4 cluster drilling (multiple wells at one pad), and hydraulic 

fracturing, combined with improved geologic understanding (subsurface delineation). Together 

these factors opened "economic extraction from low permeability reservoirs” (Popova & Long, 

2021). Further, because of the underlying geologic structure, production in the basin lowers 

operational costs and allows for more efficient infrastructure as a single well can be used for oil 

and gas (Chevron, 2023). The basin contains three main smaller basins: the Midland, Central, 

and Delaware Basins which over time have developed many sedimentary layers (Popova, 2020). 

Further as noted by Popova and Long (2021) the basin is advantaged by "better access to oilfield 

services, and its proximity to U.S. Gulf Coast refineries and export facilities."  

 
4 Horizontal well length in the Permian averaged roughly 3,800 feet in 2010 and now averages over 10,000 feet (US 

Energy Information Administration, 2022).   
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As shown in Figures 1 and 2, natural gas production in the Permian has nearly quadrupled since 

2010 (3.9x) while oil production has more than quadrupled (4.1x). Revenue has also grown over 

the course of the boom as shown in Figure 3. As of June 2021, the Midland and Delaware Basins 

combined for nearly 45,000 producing wells, of which over 80% use fracking (EIA, 2021).5 Data 

collection for this study revealed more than 220,000 active wells across the Permian Basin (TX 

and NM). In 2022, the average breakeven price for creating a new well was $52 per barrel while 

the average oil trading price was $94.79 (Federal Reserve Bank of Dallas, 2022; EIA, 2023c). 

When the spot price exceeds the breakeven price businesses can make money (Domonoske, 

2023), and it looks like there are significant reserves for this to continue. Looking forward, in 

2018 the U.S. Geological Survey estimated at least 46.3 billion barrels of oil (bbl) and 281 

trillion cubic feet (TCF) remained to be extracted (Gaswirth et al., 2018). 

The boom has driven population increases in the region. In both New Mexico and Texas, the 

populations in the Permian Basin counties6 has grown at least 15% since the 2010 census 

(Hedden, 2021; Texas Association of Counties, 2023; author’s calculations). This increase in 

workers has also shifted demand and impacted housing availability (for both temporary and 

permanent supply) (Collins, 2021). For example, in 2019 the Midland, TX median house price 

was almost three times the median house price elsewhere in Texas, for reference this only falls 

behind Austin real estate prices (Hiller, 2019; Wethe et al., 2022). To help accommodate the 

influx of temporary workers, companies have created “man camps” which provide group 

housing for O&G workers (Adams-Heard, 2018). These camps add additional environmental 

pressures and have sewage problems due to inadequate dumping facilities (KRQE, 2019). 

While the UO&G development boom has shifted housing demand in the Permian, it has also 

boosted earnings (see section 2.2), thus housing affordability in the region must be seen in 

context. First, much of this demand is absorbed by temporary housing supply (e.g., expansive 

RV and trailer lots; long-term motel room rentals, etc.) (see Collins, 2021). While not the focus 

of our analysis, this important slice of housing remains significantly under investigated.  

 

Second, in terms of more permanent housing, using the Goldman Sachs Housing Affordability 

Index, where above 100 indicates the average family could afford a mortgage (given area 

incomes, house prices and mortgage rates), the region has generally remained affordable. More 

specifically, over the period from pre-boom to present (January 2009 to mid-2023) for the metro 

areas in our geographic focus, the Permian Counties and our 18 Control Counties, have had a 

housing affordability index that has remained significantly above 100, and well above the 

national average the entire duration; this holds true for all the TX metros in our counties 

(Lubbock, TX, Midlands, TX, Odessa, TX, Abilene, TX [in a control county]) while Las Cruces, 

NM [in a control county] more closely matches the national average over the period, using the 

Goldman Sachs Housing Affordability Index (see: Walker, 2021; Boschma et al., 2023). 

 

2.2. Economic Impacts of Oil and Gas Booms 

There are multiple mechanisms through which O&G development impacts local economies: 

wages, business incomes, jobs, and government revenue (Feyrer et al., 2017; Lee, 2015; 

 
5 For a visual representation of the increase in well density in the region see Popova and Long (2022). 
6 See Appendix A for the county list. 
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Maniloff & Mastromonaco, 2017; Sarkar, 2023; The Perryman Group, 2020; Wang, 2020). 

While we do not seek to capture every impact, we offer the following as an outline of impacts 

O&G booms have had historically and what is currently happening in the Permian Basin. 

Nationwide, Feyrer et al. (2017) find that for every million dollars of extracted O&G, counties 

generate $66,000 in wages and 0.78 jobs. Feyrer et al. (2017) additionally measure spillover 

effects to neighboring counties and estimate neighboring counties within the same region as the 

new production get $243,000 in wages and 2.49 jobs. For all shale formations in the U.S., Lee 

(2015) estimates O&G employment grew 66% from 2009-2014. In line with this, Maniloff and 

Mastromonaco (2017) find wages in O&G counties are 7.5-28.6% higher than non-boom 

counties. 

Pricewaterhouse Coopers (2021) summarize the impact of the O&G industry on the U.S. 

economy. They find the industry contributes $1.7 trillion in value added, equating to nearly 8% 

of U.S. GDP. State level, the Bureau of Economic Analysis finds the contribution from O&G to 

NM and TX’s 2022 state GDP at 11.1 and 10.8%, respectively (Bureau of Economic Analysis, 

2023). In 2021, the New Mexico Oil and Gas Association estimated the industry contributed 

$2.96 billion annually to the NM budget, or 35% (NMOGA, 2021). While in Texas the Perryman 

Group found the industry contributed $163.8 billion in gross product (10% of the TX economy in 

2020). 

Employment in O&G in the New Mexico boom is highly susceptible to price fluctuations of 

O&G (Moskowitz, 2022). NAICS 21 is the code used by the U.S. Bureau of Labor Statistics 

(U.S. BLS) to capture employees in the mining, quarrying, and oil and gas extraction sector 

(U.S. BLS, 2023). Moskowitz (2022) found that from 2014-2016 when oil prices dropped from 

over $100 per barrel to $40 per barrel, employment in NAICS 21 dropped from roughly 27,000 

to 19,000 in NM. In 2015, Texas saw O&G jobs decrease 20% compared to 2014 numbers 

(Phillips, 2016). By 2019, the American Petroleum Institute estimated NM’s share of direct and 

indirect employment from O&G to be 10.2% of state employment while in Texas the value is 

13.9% (PricewaterhouseCoopers, 2021).  

Wang (2020) assesses the employment and income effects of O&G within the Permian. Their 

models use 67 counties with those outside the Permian all bordering the basin. For employment 

levels their models show for every 1 million bbl there are 113-131 direct jobs and 54-70 indirect 

jobs. For income effects, their specifications estimate that for every 1 million bbls there are 

$462-$504/job of direct impacts and $284-$331/job of indirect impacts.  

In addition to the positive impacts, some studies have found the economic boom is not 

sustainable long term or comes with a variety of external costs. Haggerty et al. (2014) find over a 

30-year period in six western states (including NM) that the counties that participated the most in 

the 1980 conventional O&G boom had decreasing per capita income when they had a higher-

than-average share of their income from O&G, after adjusting all dollar amounts to 2012. They 

also found crime rates increased and the percentage of the population with a college degree 

decreased as specialization in O&G increased (Haggerty et al., 2014).  Collins (2021) found 

traffic fatalities in the Delaware Basin were more than double the statewide average per 100,000 

people through 2019. However, Sarkar (2023) has mixed results finding no effect of well 

completion on accidents in the Permian Basin but well spudding increases accidents potentially 
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due to different vehicles being required at different stages.7 Traffic infrastructure deteriorates 

more quickly during a boom than it otherwise would under normal conditions, as roads and 

bridges are put under unplanned strains (Klasic et al., 2022), thus raising public infrastructure 

costs.  

To measure the Permian’s reliance on the O&G industry, we calculate the location quotient 

changes and wage growth for within the Permian Basin and the remainder of the state. Location 

quotients are used by the U.S. BLS to measure the concentration of employees in a specific 

sector compared to the national average (U.S. BLS, 2022). In 2009, the location quotient for 

NAICS 21 employees in NM was 4.45 and in 2022 grew to 6.87. This value means NM has 6.87 

times the concentration of people in NAICS 21 than the U.S. average. For Texas over the same 

period the concentration decreased from 4.45 to 4.05.  

Using the same data, Figures 4 and 5 present county level location quotients for 2009 and 2022, 

respectively. Zooming into the Permian Basin, the graphic shifts darker by 2022 (i.e., more O&G 

employment relative to the U.S.). From Table 1, panel A the average Permian location quotient 

for NAICS 21 is 26.48 in 2022 up from 19.77 in 2009; the concentration of employees in NAICS 

21 in 2022 was ~26 times that of the U.S. average. In comparison, non-Permian counties have a 

location quotient of 8.05. These values also show the Permian was exposed to the O&G industry 

prior to the UO&G boom as they were already more heavily concentrated in O&G than the U.S. 

Additionally, Table 1 panels B and C show the change in annual wages from 2009 to 2022, in 

constant dollars. The all-industry8 annual wage change was $10,798 for Permian counties while 

counties outside the Permian had wage increases averaging $7,137. In comparison, the annual 

wage increase in NAICS 21 averaged $13,514 for within the Permian and $9,196 outside the 

basin. Further investigation is needed to compare the oil and gas industry to all other industries, 

exclusive of oil and gas, to evaluate if spillovers are happening in line with conclusions from 

Feyrer et al. (2017). 

2.3. Background on Hedonic Pricing Method 

A heterogenous good is denoted by its marked variation in quality and attributes, where we 

would expect the price to vary greatly as the quality and bundle of attributes varies. The hedonic 

pricing method (HPM) attempts to econometrically decompose this observed variation in price 

and isolate the effect of the contribution of one or more attributes of interest. HPM analyses have 

been commonly applied in environmental economics and other fields since the 1970s (Freeman 

et al., 2014; Taylor, 2017). While frequently applied to housing markets, HPM can be applied to 

any heterogeneous good.9 There are numerous studies on the effects of air and water pollution 

and other environmental disamenities on residential housing markets. There are also prior 

applications investigating the effects of O&G production booms on nearby housing markets. 

 
7 Well spudding is the beginning stages of well development when drilling starts (Kansas Geological Survey, 2001).  
8 All-industry wages include all NAICS codes. 
9 Non-housing related examples of HPM studies, with a focus on the southwestern US and Rocky Mountain region, 

include: Pitts et al. (2012) for the outfitter market for trout fishing; Fonner and Berrens (2014) for lift tickets for 

Alpine ski areas; and Little and Berrens (2008) for big game hunting permits. 
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Before reviewing these studies, background is provided on the practical issue of selecting a price 

or value variable, given its importance in this study and applied analyses generally. 

2.3.a. Selection of the Price or Value Variable in an HPM Analysis 

Table 2 describes a select range of different price or value measures commonly used in HPM 

studies. It focuses on sales prices or estimates of market values, which reflect the capitalized 

present value of the asset, rather than rental rates (also sometimes used in HPM studies). We use 

Table 2 to help describe the process for selecting a dependent variable in this study, given 

availability and constraints. We use vectors to indicate variable category, superscripts to denote 

the individual variable name, and subscripts to indicate geographic level. This selection of 

dependent variable also must be done in the context of connecting to data on the explanatory 

variables (as discussed in Tables 3-6). For example, if price/value information is aggregated at a 

given geographic unit (median price for a census tract), then explanatory variables can only be 

matched at that scale or larger. 

The “gold standard” for selecting the dependent variable in building an HPM data set is a 

publicly available, observed sales price (P) for each individual house (h), 𝑃ℎ. Where available, 

this is always the preferred data, because it conveys an actual market transaction at the micro-

level. From an expansive literature, select HPM examples include: Dealy et al. (2017); Joshi et 

al. (2020 and in press). Examples from nearby southwestern (AZ) and Rocky Mountain (CO) 

sales price disclosure states include Izon et al (2016), He et al. (2017), and Price et al. (2010). 

However, the core issue for this investigation of housing in the Permian is that both NM and TX 

are sales price non-disclosure states.10 Multiple listing service (MLS) data is proprietary to the 

private Realtor Board ® in any given location, and sales price information is not publicly 

available at county offices. Even if select released MLS information was obtained for a given 

city, county, or metropolitan area, it would likely not be matched across the two-state basin (with 

more than 50 applicable counties). For further discussion of the policy issues surrounding non-

disclosure, see Berrens and McKee (2004). As a practical matter, investigating housing in the 

booming Permian Basin region requires pursuing alternatives to 𝑃ℎ. 

While not commonly used, assessed values (𝑉ℎ
𝐴) can work in the absence of other alternatives, 

especially when working with a single county, and a known approximation to market rate (e.g., 

the assessor target staying within a certain percentage, e.g., 85%). Kalhour et al. (2018) provide 

an HPM example using (𝑉ℎ
𝐴) for studying wildfire effects in a single NM county. But as a first 

discarded alternative, assessed values, 𝑉ℎ
𝐴, are generally too variable from market values, 

especially when assessment practices are not standardized across counties; this is in addition to 

what would be costly collection logistics for the 50 plus counties of the Permian Basin.  

Next, there are various survey-based US Census Bureau products; these are not observed prices 

but rather respondent perception of the market value of their residence.11 Further, these are 

 
10 In disclosure states local governments publicly share sales prices of homes. Additionally, non-disclosure states 

include Alaska, Montana, North Dakota, Idaho, Wyoming, Utah, Kansas, Louisiana, Mississippi, and some Missouri 

counties (Taylor, 2019).   
11 Census products follow a hierarchy defined as nation, regions, divisions, states, counties, census tracts, block 

groups, and census blocks ((U.S. Census Bureau, 2020). Census tracts are designed to be relatively unchanging to 
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either: (i) aggregated median values (𝑚𝑒𝑑𝑉𝑔
𝑆) for a Census unit (e.g., tract or block group), 

which lack detailed housing characteristics, and cannot be matched with micro-level geospatial 

information; or (ii) if at the individual residence level (micro-level) (𝑉ℎ
𝐴), they lack an address 

and cannot be matched to other geospatial information. Their advantage is that they are 

standardized, and are available over time (e.g., over the length of the oil and gas production 

boom in the Permian Basin). In addition to being based on a measure of central tendency, their 

disadvantage is the lack of the ability to combine with micro-level data on the attributes 

(explanatory variables). There are a variety of NM and southwestern HPM examples, using these 

Census-based survey samples. An example of the use of 𝑚𝑒𝑑𝑉𝑔
𝑆 is found in Izon et al. (2010), 

while Hand et al. (2008) is example of the use of 𝑉ℎ
𝐴. Extending such use out nationally, the use 

of 𝑚𝑒𝑑𝑉𝑔
𝑆  is found in Koirala et al. (2014), while Jafari et al. (2017) is an example of the use of 

𝑉ℎ
𝐴. Especially for the case of 𝑚𝑒𝑑𝑉𝑔

𝑆, at the census block group level, and extended over a long-

time frame (e.g., before the production boom to the present), this represents one option for the 

Permian. But it lacks granular data. 

Stepping back, our interest is in relating micro-level geospatial information on O&G production 

activities, and unique environmental quality variables (e.g., air pollution, seismic activity, etc.), 

with individual housing prices, while controlling for individual housing characteristics. Given all 

this, our data collection choice was to focus on two other alternatives: available list price 

information (𝑃ℎ
𝐿𝐼𝑆𝑇) and Zillow price estimates or “Zestimates” (𝑃ℎ

𝑍).12 Since list prices might be 

collected in a variety of ways, to be consistent we collect both pieces of information from the 

Zillow website. We only collect information on houses that are considered for sale, or on the 

market. Website information about a housing unit might contain both pieces, but list prices, 

𝑃ℎ
𝐿𝐼𝑆𝑇, are much more available than 𝑃ℎ

𝑍 (i.e., larger available sample). To implement our 

objectives, we proceed with using both Zillow-collected variables as alternative estimates, in the 

absence of observed market prices for housing in the full Permian Basin. 

 
allow for comparisons over time and contain 1,200-8,000 people. Block groups are subdivisions of tracts and 

contain 600-3,000 people generally (U.S. Census Bureau, 2022). 
12 The Zestimate is described as generated from a proprietary model that accounts for public data, multiple listing 

service (MLS) data, user-submitted data, location information, and market trends (Zillow, 2023). To be clear there 

are other available micro-level property sales value estimate data, that appear to be similarly generated, which can 

be purchased from commercial vendors (e.g., CoreLogic). In a nondisclosure state, the issue becomes one of 

purchasing such data, or webscraping from Zillow or another real estate alternative (e.g., Realtor.com, Redfin, etc.). 

For a NM example using the purchased CoreLogic data, see Fitch et al. (2023), investigating housing effects of 

forest treatments. Notably, their only house characteristics are house size, age and lot size, and they attempt no HPM 

econometric analysis. Their geographic focus is for part of the East Mountain area in NM (i.e., Cedar Crest, Sandia 

Park and Tijeras), which contains approximately 10,000 people and perhaps 5,000 single family residences (see: 

https://www.city-data.com/neighborhood/East-Mountain-Coalition-Tijeras-NM.html). Fitch et al. (2023) list 10,925 

sales values for 2010-2019, which would imply the average home selling more than twice on average in the decade 

(prior to any unusual Covid effects) or 1,092.5 sales annually (or 0.21 sales per capita annually). The entire 

Albuquerque metropolitan statistical area had 10,712 single family home sales in 2022, with a population of 915,927 

(or about 0.011 sales per capita). There were roughly 5.34 million home sales in the US in 2019, with a population 

of approximately 330 million (or about 0.016 per capita sales annually). Given that there appear to be perhaps an 

order of magnitude higher count of sales values than there would have been actual transactions in study area for 

Fitch et al (2023), this seems to point that the CoreLogic data are more likely to be all point estimates of value in the 

period (e.g., any time a mortgage, re-mortgage, lien, foreclosure, ad valorem tax update, delinquency etc. occurs 

with an attached value estimate) rather than actual sales transaction values.   
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2.3.b. Review of HPM Studies Using Zillow Price Data 

Zillow-collected price estimates were used in a variety of HPM studies over the last decade. 

Select studies are reviewed briefly below. In some cases, these studies used individual-level 

house list price (𝑃ℎ
𝐿𝐼𝑆𝑇) or Zestimate (𝑃ℎ

𝑍) information, and others used a Zillow generated index 

(e.g., median for a census tract, similar to 𝑚𝑒𝑑𝑉𝑔
𝑆). As an early example of the latter, in an HPM 

application to O&G activity in the Barnett Shale area (west of Dallas/Ft Worth), Weber et al. 

(2016), used the median Zillow Home Value Index (ZHVI) for a census tract (𝑚𝑒𝑑𝑉𝑡𝑟𝑎𝑐𝑡
𝑍𝐻𝑉𝐼); they 

find that a $1 increase in the O&G tax base increases home values $0.15 (p. 610). Similarly, 

Fekrazad (2019) uses the 𝑉𝑍𝐼𝑃
𝑍𝐻𝑉𝐼 at the zip code level and finds housing prices in areas with high 

risk of earthquakes have list prices 6% lower than those with low risk (p. 105).  

For a brief window of several years (2016-2018), a number of HPMs leveraged access to 

individual house level list price (𝑃ℎ
𝐿𝐼𝑆𝑇) and Zestimates (𝑃ℎ

𝑍 ) (with housing characteristics) under 

the Zillow Transaction and Assessment Dataset (ZTRAX); but the program ended enrollment in 

2018 (Bechard, 2020; Important Notice: ZTRAX Program Ending, 2018; Nolte et al., 2021). For 

example, using ZTRAX, Dong and Lang (2022) used 𝑃ℎ to examine the impact of views of 

offshore wind energy on housing prices and find no impact of turbine visibility on houses. More 

recently, Christensen et al. (2023) use the ZTRAX and 𝑃ℎ to examine exposure to the Flint, 

Michigan water crisis to study impacts on the housing market; they find the total value of the 

impact on housing values to be $520 million.  

In addition to micro-level Zillow data, aggregate data can also be obtained. Holt and Borsuk 

(2020) use Zillow data capturing the median price per square foot for a given (n) neighborhood 

(𝑚𝑒𝑑𝑉𝑛
𝑆𝑄𝐹𝑇) to value the impact of greenspaces on home values across 5,000 neighborhoods in 

44 states. Their analysis finds parks and tree shade positively influence a neighborhood’s median 

price per square foot with amenity value increasing with income (Holt & Borsuk, 2020). Kay et 

al. (2014) use HPM and Zillow data at the block group level, 𝑚𝑒𝑑𝑉𝑏𝑔
𝑆 , to show property values 

in New Jersey increase as proximity to transit stations decrease; simply, transit stations are an 

amenity rather than a disamenity for their selection of eight NJ train stations. An additional 

disamenity is increased distance from NYC stations. 

Similar to this study, Sohn et al. (2020) collect individual house-level Zillow Zestimates (𝑃ℎ
𝑍) 

and housing characteristics to measure the impact of housing proximity to retention and 

detention ponds in a Houston, TX neighborhood on 𝑃ℎ
𝑍. They find retention ponds positively 

impact housing values while detention ponds negatively impact values (Sohn et al., 2020). In 

discussing the quality of the Zestimate, Sohn et al. (2020) note previous research finds a median 

margin of error of 7.8% when compared with 𝑃ℎ (Hagerty, 2007, as cited in Sohn et al. 2020).  

And correlation with the Fiserv Case Shiller Weiss Index13, a key housing index tracker, to be 

0.9 (Mian & Sufi, 2009, as cited in Sohn et al. 2020). 

 
13 The Fiserv Case Shiller Weiss Indices were acquired by CoreLogic in 2013 and are currently known as the S&P 

CoreLogic /Case-Shiller Indices (Reuters Staff, 2013) 
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2.3.c. Review of Prior HPM Housing Studies on the Effects of Oil and Gas Booms 

 

O&G development can bring positive effects to communities, with increases in local 

employment and earnings, but also a variety of negative consequences.  

In addition to housing pressures, a variety of environmental and health consequences are 

connected to O&G booms. The O&G industry is a global industry, but the effects are felt at 

regional and local levels too (Adgate et al., 2014). Global considerations include climate change 

and global warming from the production, transport and especially the burning of fossils fuels 

(Adgate et al., 2014). Fracking produces carbon dioxide, methane, and other pollutants that 

contribute to global warming (Leahy, 2019). Regionally, fracking contributes to increases in 

particulate matter (PM2.5 and PM10), nitrogen oxides (NOx), and other compounds that can lead 

to respiratory and cardiovascular issues (Fann et al., 2018; Gonzalez et al., 2022; Kerkvliet & 

Morton, 2017). Locally, the population is subject to increased traffic and potential water 

contamination (Adgate et al., 2014). At the well site level there is risk of chemical spills and 

other workplace hazards (Adgate et al., 2014). Finally, there is evidence that the common 

practice of reinjection of the produced water is connected to increased risk of seismic activity 

(e.g., Ellsworth, 2013; Folger and Tiemann, 2016; Horton, 2012; Rogers and Malkiel, 1978). 

Given the complex mix of goods and bads that an O&G boom can bring, housing markets are 

useful indicators of community preferences, and how various effects get capitalized (Krupnick & 

Echarte, 2017). Unsurprisingly, there are a significant number of HPM studies on the effects of 

proximity or density (typically within 1 or 2 km) of O&G wells, with a focus on hydraulic 

fracking, shale gas, and UO&G boom areas (e.g., PA, CO).  However, with the sales price non-

disclosure status in both NM and TX, there is an absence of HPM studies in the Permian. 

From the array of applications of HPM to O&G development more generally, results of selected 

studies are summarized in Table 7. Proximity to the nearest well is used across multiple studies 

under the framework that production creates negative externalities and subsequently negatively 

impacts housing values (Balthrop & Hawley, 2017; Gopalakrishnan & Klaiber, 2013; He et al., 

2017; Lee & Whitacre, 2021; Muehlenbachs et al., 2015). Results of the studies are mixed 

suggesting variation across geographic areas. In addition to proximity of wells, seismic activity 

has been connected to injection wells and studies have consistently found negative impacts to 

home values with increased seismicity (Ferreira et al., 2018; Gibbons et al., 2021; Metz et al., 

2017). While air pollution effects of O&G development have been identified as important (e.g., 

Kerkvliet and Morton, 2020), few studies use HPM connected to air quality changes specifically 

attributable to O&G. An exception, Boxall et al. (2005) use HPM to measure the impact of sour 

gas production on housing prices. 

There are other important gaps in the HPM studies to date, including: the need for improved 

efforts for controlling the absence or presence of piped water, and the inability to match a house 

sale with information about any private lease royalties from attached mineral rights. However, 

various reviews of housing market effects (e.g., Krupnick and Echarte, 2017; and Loomis and 

Haefele, 2017; Kerkvliet and Morton, 2020) make clear that that there can be pathways for both 

positive and negative effects from UO&G development in a boom region. The challenge for 

HPM applications is to attempt to disentangle these effects. 
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2.4. Oil and Gas Production Impacts on Air Quality 

The National Ambient Air Quality Standards (NAAQS) are set by the U.S. Environmental 

Protection Agency (EPA) under authority of the Clean Air Act (US EPA, 2014). The NAAQS 

cover six criteria pollutants including carbon monoxide, lead, nitrogen dioxide (NO2), ozone, 

particle pollution (PM2.5 and PM10), and sulfur dioxide (SO2) (US EPA, 2014). While ozone has 

health impacts, Goodkind et al. (2022) find ozone in NM is primarily driven by pollution in other 

states and would be difficult to for policy makers to enforce regulations outside of those already 

in place. PM2.5 and its precursors (discussed below) can originate directly from O&G production 

and thus lie within the realm of control for both NM and TX regulators. Additionally, using data 

from Goodkind et al. (2023), allows for the isolation of air quality changes due to O&G 

production emissions. 

Air pollution is a byproduct of O&G production. PM2.5 is particulate matter with a diameter less 

than 2.5 micrometers (PM2.5), measured as micrograms per cubic meter of air (µg/m3) (New 

York Department of Health, 2018; US EPA, 2016). PM2.5 can occur naturally (i.e. dust) or can be 

created through human activity as primary PM2.5 or a precursor pollutant. Precursor pollutants of 

PM2.5 include volatile organic compounds (VOCs), nitrogen oxides (NOx), sulfur dioxide (SO2), 

and ammonia (NH3) (Close, 2021). PM2.5 is regulated by the EPA under the Clean Air Act of 

1970 (U.S. EPA, 2016). Areas are categorized as nonattainment when their PM2.5 levels exceed 

12 µg/m3 over a three-year average (U.S. EPA, 2014). The primary NAAQS standards are 

designed to “provide public health protection” (U.S. EPA, 2014). 

Previous studies find PM2.5 causes significant health effects including low birth weight, asthma, 

and cardiovascular problems through mechanisms such as metabolic activation and inflammatory 

responses (Dockery et al., 1993; Dominici et al., 2006; Erfanian & Collins, 2020; Olstrup et al. 

2022; Stafoggia et al., 2023; Wright et al., 2021). Dockery et al. (1993) provides one of the 

earliest papers on the connection between the size of particulate matter and associated health 

outcomes in the seminal “Harvard Six Cities Study.” According to Cao et al. (2013) additional 

work by Dockery (2006, as cited in Cao et al., 2013) and Chow et al. (2006, as cited in Cao et al., 

2013) provided the foundation for adding PM2.5 to the NAAQS rather than the existing “total 

suspended particulates” category the EPA was using.  

Generally, particulate matter increases premature mortality risk across all populations (Zanobetti 

and Schwartz, 2009), however, Olstrup et al. (2022) finds elevated risk among the young (<14 

years) and the elderly (65+). This is in line with the meta-analysis results from Fan et al. (2015) 

that found increased PM2.5 levels correspond with increased emergency room visits and are 

elevated for children. Di et al. (2017) using Medicare data on an older population finds higher 

PM2.5 levels increase risk of mortality. Lelieveld et al. (2015) find outdoor air pollution from 

PM2.5 contributes to 3.3 million premature deaths globally with the potential for that value to 

double by 2050. Problematic to the study of air quality is the inherent mobility of pollutants. 

Dedoussi et al. (2020) measure air quality and the transportation across state lines and found 

41% of premature mortality from a state’s emissions occur outside the state. 

Further, air quality has been incorporated into HPM analyses since the 1970s when PM10 was a 

common measurement of air quality (Graves et al., 1988; Smith & Huang, 1995). Neill et al. 

(2007) found negative impacts of PM10 on Las Vegas housing prices. Singh et al. (2018) used 
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HPM with proximity to the Salton Sea and air quality as variables of interest. Using property 

transactions within 10 miles of the sea they find a $595 decrease in value with each additional 1 

km the property is closer to the sea and a 1% increase in PM10 decreased values by $1,140. Nam 

et al. (2013) finds a 10% decrease in PM10 has a marginal willingness to pay of $187-$243 per 

month. Using PM2.5 Nam et al. (2022) find a 1 unit increase in PM2.5 decreases property values 

by 3.7%. 

 

In connection to pollution from O&G activities, Loomis and Haefele (2017) estimate the health 

damages from fracking induced external damages from PM2.5 and its precursors at over $17.5 

billion (2015$) annually for 14 states in their study. However, this estimate excludes pollution 

from oil wells that are fracked making the estimate more of a lower bound. More recently, 

Buonocore et al. (2023) estimated the damages of the health impacts from 2016 O&G 

production; they find PM2.5, NO2, and ozone caused an estimated 7,500 premature deaths and 

410,000 asthma exacerbations.  

However, even given these high external costs over the period 1981 to 2016, the general overall 

trend in air pollution for PM2.5 concentrations across the U.S has notably declined, although 

regional disparities remain (Colmer et al., 2020). This trend, however, has stagnated most 

recently due to wildfire-driven smoke (Burke et al., 2022). The latter point emphasizes 

consideration of sources on local effects (or receptors), because PM2.5 is carried by prevailing 

wind patterns. There is recent literature investigating source-receptor models (Goodkind et al., 

2019a, 2019b; Heo et al., 2017; Van Dingenen et al., 2018). Given that PM2.5 in the Permian may 

be spread across the basin by diverse sources (e.g., Metropolitan areas in the southwestern US, 

wildfires etc.), parsing out the air quality changes attributable to O&G production in the Permian 

provides a way to measure consumer sentiment of those both inside and outside the basin 

regarding the environmental externalities they face. 

This analysis is the first HPM to analyze the separate effects of general PM2.5 concentrations 

(satellite sourced), and the separate air quality change in PM2.5 attributable to O&G production 

activities. This isolation of the PM2.5 attributable to O&G emissions originating from the 

Permian Basin combines the 2017 National Emissions Inventory and the InMAP Source-

Receptor Matrix (ISRM) (Goodkind et al., 2023). Van Donkelaar et al. (2021) provide data on 

PM2.5 from satellites, modeling, and ground level measurements. The National Emissions 

Inventory (NEI) is conducted every three years and reports emissions by industry either as point 

sources or nonpoint sources aggregated at the county level (U.S. EPA, 2022). The ISRM uses 

estimates of emissions from a source and estimates the corresponding change in PM2.5 

concentrations at receptor locations (Goodkind et al., 2019a, 2019b). The resulting dataset 

provides Census block group PM2.5 concentrations (𝑄𝑏𝑔
𝑃𝑀) and the PM2.5 concentration change 

attributable to O&G activity (𝑄𝑏𝑔
𝛥𝑃𝑀). 

The satellite derived PM2.5 concentration estimates fill the gap on air quality measurements, 

especially for rural areas of NM and TX where few monitors exist. Monitoring stations in both 

TX and NM are managed at the state level. The New Mexico Environment Department (NMED) 

currently has only two air quality monitors in the Permian Basin of which only the Hobbs 

monitor actively measures PM2.5 (New Mexico Environment Department, 2023). The Texas 

Commission on Environmental Quality (TCEQ) manages eight monitoring stations in the 
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Permian Basin and only the Lubbock County and Odessa Gonzales monitors capture PM2.5 

(TCEQ, 2023).14  

 

3. Conceptual Framework 

For any heterogenous good, its observable quality attributes are varying. The hedonic pricing 

method (HPM) can be used to econometrically decompose observed price variation in any 

heterogeneous good, and thereby isolate the effects of any individual attribute. As focused on 

here, HPM has been widely applied to residential housing and property markets for almost five 

decades (Rosen 1974; Palmquist, 1989). The simplifying assumption is that a household (h) 

chooses a single residence. It is also assumed that the choice of residence is based on a bundle 

(or vector) of housing attributes (A), that households maximize their utility (U) and have limited 

income (M). Then, based on Rosen’s (1974) model, and following closely Chakraborty et al. 

(2023), the household utility maximization problem over the choice of C and A can be given as.  

 max
𝐶,𝐴

𝑈 = 𝑓(𝐶, 𝐴)   subject to: 𝐶 + 𝑃(𝐴) = 𝑀 (1) 

Where C is a composite numeraire good (with a price of one by definition) and P is the price of a 

residential housing unit. To maintain a certain utility level (𝑈̌), the amount that household 

budgets for A will be Ω =  𝑀 − 𝑃(𝐴), and the problem becomes: 𝑈̌ = 𝑓(𝑀 −  Ω, 𝐴); where Ω is 

the bid function for the household’s maximum willingness to pay as a function of their target 

utility, income level, and varying housing attributes: Ω = (𝑀, 𝐴, 𝑈̌) 

Theoretically, the hedonic price function is defined as the envelope of a set of individual bid 

curves, and a set of supply-side offer curves, for housing units (see Taylor, 2017, p. 239). 

Applied HPM analyses typically start with regressing a selected price measure as a function of 

selected attributes (e.g., Michelson and Tully, 2018). The derivative of this hedonic price 

function with respect to any individual attribute is referred to as the marginal implicit price 

(MIP) of the attribute and represents the marginal willingness to pay for a unit change in the 

attribute. Further, if the market price for heterogeneous houses reflects the present value of the 

expected net benefit stream from this asset, and if variation in a given attribute is found to 

statistically significantly affect the price or value, then it is commonly said that the underlying 

attribute (e.g., distance to a highway) is being capitalized into the housing market, either 

positively or negatively. 

For our HPM application we assume that price is a function of the residential housing unit’s 

structural characteristics, location characteristics, and environmental quality characteristics. As 

noted by various sources, (e.g., Dinan and Miranowski, 1989; Taylor, 2017), an OLS linear 

regression may create bias in forcing linearly additive effects for any attribute. As commonly 

used in applied studies, the log-linear function can be given as follows: 

 
14   The other six TX Permian Basin monitoring stations (with nearest city in parentheses) are: 

Lubbock County (Lubbock), Big Spring Midway (Midland), Midland Avalon Drive (Midland), Goldsmith Street 

(Odessa), Odessa Westmark Street (Odessa), Odessa-Hays Elementary School (Odessa), Odessa Gonzales (Odessa), 

Abilene Industrial Boulevard (Abilene) (TCEQ, 2023). 



 20 

ln(𝑃) =  𝛿 + 𝛼𝑆 + 𝛽𝐿 + 𝜆𝑄 + ɛ (2) 

Where ln(𝑃)  is the natural log of the price of the residential housing unit in dollars; 𝑆 is a vector 

of structural housing unit characteristics (e.g., age, size, number of rooms) 𝑆 =
{𝑠1, 𝑠2, … 𝑠𝑖 , … 𝑠𝑛}; 𝐿  is a vector of location characteristics 𝐿 =  {𝑙1, 𝑙2, … 𝑙𝑖 , … 𝑙𝑛} (e.g., 

population density, racial makeup, or rural/urban status); 𝑄 is a vector of environmental quality 

characteristics 𝑄 = {𝑞1, 𝑞2, … 𝑞𝑖 , … 𝑞𝑛}; 𝜀 is the mean zero error term; 𝛿 is the intercept, and 𝛼, 

𝛽, and 𝜆 are the corresponding conformable vectors of estimable coefficients. 

To extend the price function, in equation (2), to our context and the focus on the Permian Basin, 

and the effects of O&G production activities, we isolate O&G well measures from other 

locational characteristics as the vector 𝑊 = {𝑤1, 𝑤2, … 𝑤𝑖 , … 𝑤𝑛}. This might be a scalar, but 

could include various types of well counts or measures within a location, thus 𝛾 is a conformable 

vector of estimable coefficients, as shown below: 

ln(𝑃) =  𝛿 + 𝛼𝑆 + 𝛽𝐿 + 𝜆𝑄 + 𝛾𝑊 + ɛ (3) 

Given the log-linear price function, in equation (3), the marginal implicit price, for any 

individual attribute, say 𝑞𝑖 is:  

𝜕𝑃

𝜕𝑞𝑖 =  𝜆𝑖 ⋅ 𝑃 (4) 

The estimated value quantifies the marginal implicit price of a change in the attribute. Further, 

for the log-linear function, 100 × 𝜆𝑖  can be interpreted as the percentage change in housing 

value given a one-unit change in the corresponding attribute. 

Next, we transition to describing the data used in estimating the semi-log hedonic price function, 

in equation (3), and calculating MIPs, in equation (4). Note that if we subscripted the unit of 

observations in equation (3), ideally as much information as possible will be at the micro-level of 

the individual house ℎ (e.g., 𝑃ℎ, and 𝑆ℎ
1, 𝑆ℎ

2, etc.). However, available information for individual 

attributes may vary in spatial definition. For example, there may be variation in locational 

characteristics at, say, the census tract or county level, and variation in the environmental quality 

characteristics (e.g., distance or density). In all cases, we have endeavored to use the smallest 

unit of available information. 

 

4. Data Collection 

Data is collected at multiple geographic levels (county, block group, and the house or dwelling 

unit) and comes from a variety of sources. Using address information, each house is geo-

referenced and then connected to a variety of geospatial information, at varying scales. Using the 

generic price function (equation 3), data is categorized by the vector capturing the variable. 

Variables are both named (in all caps) and given a shorter notation, which follows 𝑋𝑔𝑒𝑜
𝑉𝐴𝑅 where X 

is the referenced vector, VAR represents the variable, and geo is the geographical level the 

variable is measured or collected at. In this section, we briefly describe the data, while more 

detailed information on collection, any transformation and units, etc. is provided in Tables 3-6 
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and 8. Table 8 provides our two alternative dependent variables (ln 𝑃ℎ
𝐿𝐼𝑆𝑇  and ln 𝑃ℎ

𝑍); Table 3 

provides the structural (𝑆) housing characteristics; Table 4 provides the locational (𝐿) 

characteristics; Table 5 provides the select environmental quality (𝑄) variables); and Table 6 

provides the well (𝑊) characteristics.  

Observations on houses are limited to those listed for sale on Zillow in the roughly nine-month 

period between 21 September 2022 and 31 May 2023. Each housing unit is first webscraped 

using Webscraper.io, a freely accessible tool, which pulls publicly available information from 

internet websites in bulk and exports chosen information into tabular format (Webscraper.io, 

2023). Applying the webscraping tool used on Zillow data captures the list price (𝑃ℎ
𝐿𝐼𝑆𝑇), the 

Zillow Zestimate (𝑃ℎ
𝑍), an address, and a select set of structural characteristics (𝑆). The 

properties used in the analysis were categorized as “for sale” on Zillow and filtered to have at 

least one bedroom and one bathroom.  

One limitation of this process is not all characteristics of each unit are scraped without error each 

time. The tool relies on the information being in the same section of the webpage each use and if 

the information is not there the scraper returns null values. Or if information shifts to another 

portion of the page whatever is in the original location is pulled. Thus, while we collected a wide 

variety of housing characteristics, given missing data, co-linearity, etc., Table 3 provides a 

parsimonious set. This is similar to what is provided in Tables 4, 5, and 6. 

Additionally, due to the sales price non-disclosure issue discussed above, we emphasize that 

𝑃ℎ
𝐿𝐼𝑆𝑇and 𝑃ℎ

𝑍 are not values of transactions that have occurred. 𝑃ℎ
𝐿𝐼𝑆𝑇 is chosen between realtors 

and sellers while 𝑃ℎ
𝑍 is calculated using a proprietary formula that incorporates information from 

the Multiple Listing Service (MLS), public information, and Zillow users (Zillow, 2023). 𝑃ℎ
𝑍 is 

only calculated when an area has enough market activity to lead to valid valuation calculations, 

which tends to be rarer in many rural areas in the Permian Basin.  To give some sense of 

accuracy, a sale-to-list-price ratio captures how far the sale price is from the listed price. From 

September 2022-April 2023 NM averaged a sale-to-list-price ratio of 98.3% while TX averaged 

97.4% (Redfin, 2023a, 2023b). Given these values, on average, 𝑃ℎ
𝐿𝐼𝑆𝑇 is slightly higher than 𝑃ℎso 

we should view 𝑃ℎ
𝐿𝐼𝑆𝑇  as an upward bound on 𝑃ℎ. Where both observations are available for a 

housing unit, the correlation between 𝑃ℎ
𝐿𝐼𝑆𝑇 and 𝑃ℎ is 0.99 in our data.  

After webscraping housing units, each unit is geolocated using ArcMap to obtain precise 

latitudes and longitudes. A map of all the houses with a list price (LISTPRICE) is shown in 

Figure 6 and the subset of those with a ZESTIMATE are in Figure 7. Houses with an undisclosed 

address are assigned to the city center of the given city. This imputation was applied to 0.3% of 

the data (19 of 6,808 houses). Using map layers for each variable we match locational (𝐿), 

environmental (𝑄), and well data (𝑊) to the housing unit. All specifications use the natural log 

of the dependent variable (ln 𝑃ℎ
𝐿𝐼𝑆𝑇   or ln 𝑃ℎ

𝑍 ) to decrease the skewness of the variable.  

Our final full dataset includes 6,808 homes with 𝑃ℎ
𝐿𝐼𝑆𝑇 and 2,956 homes with 𝑃ℎ

𝑍. It is important 

to note however that in arriving at the final usable econometric samples, not all housing units 

have each variable, so some observations are excluded based on which variables are included in 

each specification. 
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4.1. Structural Characteristics 

Structural characteristics collected via webscraping include: the number of bedrooms (𝑆ℎ
𝐵𝐸𝐷), 

bathrooms (𝑆ℎ
𝐵𝐴𝑇𝐻), the house’s square feet (𝑆ℎ

𝑆𝑄𝐹𝑇
), house type (𝑆ℎ

𝑀𝐴𝑁𝑈), age (𝑆ℎ
𝐴𝐺𝐸), central air 

conditioning (𝑆ℎ
𝐴𝐶), garages (𝑆ℎ

𝑀𝑈𝐿𝑇𝐼−𝐺𝐴𝑅), and property lot size (𝑆ℎ
𝐿𝑂𝑇). Due to high collinearity 

between variables not all can be used together. 𝑆ℎ
𝑀𝑈𝐿𝑇𝐼−𝐺𝐴𝑅 indicates whether the housing unit 

has multiple garages (1 = yes, 0 otherwise).  Manufactured homes are often relatively common in 

boom areas, and we control for here.  𝑆ℎ
𝑀𝐴𝑁𝑈 is binary variable determined by the Zillow listing 

representing whether a home is a manufactured home (yes = 1, 0 otherwise). All structural 

variables are described in further detail in Table 3.  

4.2. Location Characteristics 

In addition to individual housing data, local demographic and economic characteristics provide 

information about who lives in the area and what their job prospects may be. While we cannot 

match individual characteristics of homeowners to each house, we can use the geocoded housing 

units to attach census data at varying levels to each property. 

The most recent pre-pandemic 5-year American Community Survey (ACS) Data (2015-2019) is 

used at the block group level (𝑏) for the percentage of the population who are white 

(𝐿𝑏
𝑃𝐶𝑇−𝑊𝐻𝐼𝑇𝐸), the median household income (𝐿𝑏

𝑀𝐸𝐷−𝐻𝐼𝑁𝐶), and the population density per square 

kilometer (𝐿𝑏
𝑃𝑂𝑃−𝐷𝐸𝑁𝑆). Block groups are the smallest level of detail for these variables without 

losing observations.  

Unemployment data at the census block group level is unavailable in the 5-year ACS data. 

Instead, to account for the labor market conditions during the period the housing units are listed, 

unemployment rates are used from each state’s respective employment agency (New Mexico 

Workforce Connection, 2023; Texas Laborforce Commission, 2023). Local Area Unemployment 

Statistics (LAUS) are obtained at the county level and averaged over March 2022-February 2023 

to calculate 𝐿𝑐
𝐴𝑉𝐺−𝑈𝐸. The data is the most up-to-date source that covers the area at the same 

general time the houses were for sale. Each county has a percentage of people unemployed 

which helps reflect conditions of the local economy.  

Housing prices and their associated water source have been shown to be susceptible to impacts 

from O&G production activity, including in areas of hydraulic fracking booms (Balthrop & 

Hawley, 2017; Gopalakrishnan & Klaiber, 2013; Mothorpe & Wyman, 2021; Muehlenbachs et 

al., 2012, 2015). Through the hydraulic fracturing process water is injected into the well site to 

extract more gas, which potentially contaminates the water source for a house in the local area 

(Hill & Ma, 2017). While we do not have standardized, geographically dense water quality 

measures across the region, we do have data on O&G injection wells (discussed below).15 

Further, the one standardized water measure is whether a house is on a public system, and thus 

 
15 While multiple studies find water contamination in the Permian Basin, Hildenbrand et al. (2016) outline the 

complications associated with identifying UO&G as the cause of the contaminants (Backstrom, 2019; Rodriguez et 

al., 2020). Limitations include but aren’t restricted to a lack of baseline measurements prior to the UO&G boom and 

the confounding exposure to conventional O&G for years.  
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subject to state and federal drinking water standards.16  𝐿ℎ
𝑃𝑊 represents whether a house is on 

public water or not based on shapefiles of each state’s public water areas from the Texas Water 

Development Board and the Office of the State Engineer (NM) (Office of the State Engineer, 

2022; Texas Water Development Board, 2023). Homes outside public water service boundaries 

are on water systems not managed by a public agency and are assumed to have less monitoring 

and potentially be at higher risk for pollutants due to fracking. A map of the public water systems 

in both states is shown in Figure 8. 

As noted earlier, a set of control counties were selected using the process outlined in Appendix 

A. There are 55 Permian Basin counties and 18 counties in the control set. In creating the 

controls, we sought counties that differ greatly (i.e., more than an order of magnitude), on 

average, from Permian counties in their exposure to O&G production but were similar on 

average statistically for a set of socio-economic/demographic characteristics. 𝐿𝑐𝑡𝑦
𝑃𝐸𝑅𝑀𝐼𝐴𝑁  indicates 

the county is in the Permian Basin as defined by the Dallas Federal Reserve (Federal Reserve 

Bank of Dallas, n.d.). 

4.3. O&G Well Variables 

A focus of this HPM analysis is on the collection of well data. Of note there are both 

conventional and unconventional oil and gas wells active in the Permian; but the supermajority 

(>80%) are for UO&G. So, while the region is predominately characterized by UO&G, we make 

no distinction in our well data collection. While this was a pragmatic research choice, this is not 

likely to be a difference parsed by the housing market. Further, individual well production 

amounts are proprietary knowledge that are not publicly accessible, except at aggregated county 

level production amounts.17 However, detailed, geo-referenced well information is available. NM 

maintains a database of all wells and well types through the NM Oil and Gas Division’s 

Geospatial Hub (Livengood, 2023). The TX database is maintained by the Railroad Commission 

of Texas (Railroad Commission of Texas, 2021). Each state provides maps of individual 

geolocated well locations and well types. Importantly, all wells included in the study are active 

wells. In addition to leaving out inactive wells, this selection distinguishes the analysis from 

studies (e.g., He et al., 2017) that are based on well permit data (where many permitted sites 

might never be drilled), and subject to criticism (e.g., Kerkvliet and Morton, 2020). Information 

was collected on a wide variety of wells (e.g., seven types in NM and 85 types in TX), and then 

collapsed into two exclusive sets: (i) injection and disposal wells; (ii) oil and gas wells; and then 

combined into (iii) the total active wells. Table 6 contains more detail on the creation of the 

variables.  

Like Balthrop and Hawley (2017), Lee and Whitacre (2021), we focus on the density of wells 

near a house as an exposure to O&G production, rather than, say, distance to the nearest well. 

Using buffers of 0.5 km, 1 km, 2 km, 5 km, and 10 km around the housing unit, wells of each 

type are counted within each ring. Figure 9 shows an example of how well counts are generated. 

Figure 10 shows the locations of oil and gas wells within the selection region or near the border 

 
16 The Safe Drinking Water Act managed by the U. S. Environmental Protection Agency (EPA) sets drinking water 

quality limits on over 90 contaminants including both chemical and microbial (U.S. EPA, 2015). 
17 These aggregated county totals were only used in this analysis in helping select the set of control counties relative 

the Permian Basin counties (see Appendix A). 
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in case homes were near county borders. Figure 11 shows the injection and disposal wells. 

Figure 12 shows the wells over a magnified area in the basin. Consistent with prior HPM studies 

on the effects of UO&G development, the econometric analysis focuses on well density 

measures within either 1 km (0.62 mile) or 2 km (1.24 miles) of a house. 

4.4. Environmental Effects Variables  

A boom in unconventional O&G development (UO&G)—horizontal and hydraulic fracking—

brings with it a density of development activities, and associated concerns with environmental 

externalities (e.g., pollution and emission, industrial hazards etc.). Production activity can impact 

the local environment through multiple pathways but can often be concentrated in area or co-

linear. This analysis focuses on: (i) seismic activity; and (ii) air quality measures.  

Human-induced increases in seismic activity have been documented for areas exposed to UO&G 

activity (Ellsworth, 2013; Folger & Tiemann, 2016; Foulger et al., 2018), including in the 

Permian Basin (Skoumal & Trugman, 2021; van der Elst et al., 2013). Following Metz et al. 

(2017) for their HPM analysis in Oklahoma, two earthquake variables are specified for capturing 

the presence of seismic activity 𝑄ℎ
𝑆𝐴3 and 𝑄ℎ

𝑆𝐴1 around a home. 𝑄ℎ
𝑆𝐴3 indicates whether an 

earthquake above 3.0 on the Richter scale occurred within 10 km of the property from January 1, 

2010 to April 4, 2023. 𝑄ℎ
𝑆𝐴1 indicates whether 50 earthquakes above 1.0 on the Richter scale 

occurred within 10 km of the property over the same period. Additionally, variables measuring 

the quantity of earthquakes over this same period over magnitude 1 and over magnitude 3 around 

a home were also created and are shown in Figure 13. 

PM2.5 represents a critical local air pollution measure due to the associated health impacts 

outlined in section 2.4. PM2.5 can have a wide variety of sources, including being blown into a 

region from distant activities (urban centers, wildfires, etc.). A unique feature of this study is the 

ability to distinguish between overall PM2.5 concentrations and the PM2.5 concentration changes 

due to oil and gas production in the Permian Basin. With respect to the latter, the air quality of 

the region is susceptible to environmental toxins during the extraction and transportation process 

associated with O&G activities. PM2.5 concentrations (𝑄𝑏𝑔
𝑃𝑀) and PM2.5 concentration changes 

due to oil and gas (𝑄𝑏𝑔
Δ𝑃𝑀) were collected from datasets from van Donkelaar et al. (2021) and 

analysis by Goodkind et al. (2023) at the census block group level. Additional information on 

𝑄𝑏𝑔
𝑃𝑀  and 𝑄𝑏𝑔

Δ𝑃𝑀 can be found in Table 5. Figures 14 (general PM2.5 concentrations) and 15 (PM2.5 

concentrations changes attributable to O&G production) show the air quality variables spatially. 

4.5. Summary Statistics 

Tables 9-13 show the mean, median and standard deviation for each variable broken down by 

variable category (𝑃, 𝑆, 𝐿, 𝑄, and 𝑊), and separated out for Permian counties, control counties 

and the combined values. As shown in Table 9, for the price variables the control group has 

significantly higher list price (𝑃ℎ
𝐿𝐼𝑆𝑇) and Zestimate (𝑃ℎ

𝑍) values than the Permian. The median 

value for a Permian home has a 𝑃ℎ
𝐿𝐼𝑆𝑇 of $244,900 while the median value for a home in the 

control group is $359,900 (46% higher); the same difference in medians for the Zestimate (𝑃ℎ
𝑍) is 

$232,197 to 3$63,050 (56% higher). 
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In Table 10, number of bedrooms (𝑆ℎ
𝐵𝐸𝐷) and square footage of the home (𝑆ℎ

𝑆𝑄𝐹𝑇) have similar 

values between the two groups with a combined average of 2,122 square feet and 2.3 bedrooms. 

Roughly 5% of both samples are manufactured homes. The Permian counties, perhaps 

surprisingly, represent an older housing stock. The median age (AGE) is 39 years old overall, 

with the median age of homes in the Permian at 43 years versus 28 years in the control counties. 

The median lot size, 𝑆ℎ
𝐿𝑂𝑇, is 0.24 acres overall (0.22 in the Permian versus 0.32 in the control 

group), with vary large variation in this measure (for both groups), as select residential properties 

are quite large. 

 

Table 11 shows most of the homes are in urban areas as defined by the census (towns or cities of 

more than 5,000 people). The sample is primarily composed of properties within TX (more than 

75% overall, and more than 80% of Permian houses are in TX counties). The median distance to 

a highway or principal arterial road (𝐿ℎ
𝐷𝐼𝑆𝑇) is shorter in the Permian sample (0.75 km versus 1.25 

km), which is in line with having more homes in the URBAN category. Median household 

income (MED-HINC) is higher in the Permian block groups (median value of $71K versus 

$65K), but per capita income (PC-INC) is similar between the Permian and the control. The 

average unemployment rate in the county corresponding to a home (𝐿𝑐
𝐴𝑉𝐺−𝑈𝐸) is higher in the 

control counties (median value of 5.1%) versus the Permian counties (median value of 4.5%). 

Most homes are within the boundaries of public water systems, with 84% in the Permian 

counties and 87% in the set of control counties. 

Counts of active well data in Table 12 demonstrate the whole region is exposed to active wells 

but the Permian counties counts are substantially higher on average than in control county group 

(almost 16 times more total wells per house on average). Well densities are also shown to be 

highly variable around a home, with the standard deviations at least twice as large as the mean, 

in all comparisons in Table 12. The medians for well counts are all zero which means that more 

than half of houses in the sample do not have any wells within 2 km. When there are active wells 

next to a home in the Permian, there tends to be a lot of them (i.e., more than a dozen). But active 

wells in the control counties are a rarity (averaging less than one within 2 km of a home). In 

relative terms, the average Permian home has 1.71 injection and disposal wells (INJ&DISP-

2KM), 12.94 O&G wells (O&G-2KM), and 14.65 total wells (ALLWELLS-2KM) within a 

radius of 2 km. In contrast, the control homes average 0.05 INJ&DISP-2KM, 0.88 O&G-2KM, 

and 0.93 ALLWELLS-2KM. It is important to note in our well data that O&G is being used 

generally here (we are not distinguishing conventional oil and gas wells from unconventional oil 

and gas wells, which constitute a supermajority of all wells).  

Finally, because Table 12 is focused on well density around homes, it does not provide the total 

volume of all active wells in the region (e.g., broken out by type, and by Permian versus the 

control counties group). For the 55 counties of the Permian Basin, with 81,742 square miles of 

land, we identified 221,964 active wells (with 21,466 injection and disposal wells (9.7%) and 

200,498 oil and gas wells (90.3%)), or 2.72 active well per square mile, on average. In contrast, 

for the 18 control counties, with 27,762 square miles of land, we identified 2,057 active wells 

(with 83 injection and disposal wells (4.0%) and 1,974 oil and gas wells (96.0%)), or 0.07 active 

wells per square mile, on average. 
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Regarding environmental variables, Table 13 captures seismic activity and air quality measures. 

The concern with earthquakes is that UO&G and in particular disposal wells will cause human-

induced changes in seismic activity (Metz et al., 2017). As noted by Metz et al. (2017, p. 86): 

“Given consumer theory, and assuming households are mobile, one would expect that homes in 

‘high risk areas’ (those that have witnessed more earthquakes) would be priced lower than 

equivalent homes in lower-risk areas.”; i.e., seismic activity in a high-risk area is expected to be 

a negative externality. 

As shown, exposure to seismic activity for a home is much larger in the Permian than in the 

control county group, but there is still large variation across homes in the Permian sample. For 

example, for the quantity or count of earthquakes above magnitude 1.0 within 10 km of a home 

(𝑄ℎ
𝐸𝑄1

) over 2010-2013, there is a mean of 13.3 with a relatively large standard deviation of 31.5 

in the Permian, compared to a mean of 0.03 earthquakes with a standard deviation of 0.2 in the 

control counties group. Turning to the quantity or count over the boom period of magnitude 3.0 

or greater earthquakes (𝑄ℎ
𝐸𝑄3

), where people really start to feel effects, the mean for a home in 

the Permian is 1.4 (with a large standard deviation of 3.6), versus a mean of near zero in the 

control counties group. For comparison, Metz et al. (2017) found significant negative effects in 

an Oklahoma HPM study from UO&G development, where their measure of a seismically active 

region was 50 or more earthquakes of magnitude >1.0 within the period 2010-2015. As noted by 

others (e.g., Collins, 2021) to date the Permian in general does not appear to have experienced 

the same level of seismic activity (e.g., relative to Oklahoma). 

Turning to the air pollution variables in Table 13, as based on satellite data and matched to a 

census block group, the variable PM2.5 (𝑄𝑏
𝑃𝑀) is highly similar between the control sample and 

the Permian sample; with means and medians the same concentration of 5.9 µg/m3 (both areas 

are well within the NAAQS standard of 12 µg/m3).Where the two sample areas differ is in the 

change in PM2.5 in a given block group attributable to oil and gas production (𝑄𝑏
𝛥𝑃𝑀); for the 

Permian sample, this average was 2.2 µg/m3(with a large standard deviation of 3.27) versus 0.24 

µg/m3 (with  much smaller standard deviation of 0.22). So, while the increment in 2017 due to 

oil and gas production was not enough alone to push areas into nonattainment, it did create 

significant change that was highly variable across block groups. Finally, it is important to note 

that 𝑄𝑏
𝛥𝑃𝑀 does not indicate whether the change is due to conventional O&G or UO&G. 

5. Econometric Modeling Approach 

Given the study objectives and available data, the econometric modeling approach follows 

equation (5) below in implementing log-linear hedonic price functions for various model 

specifications. Given the much larger sample available, the focus is on using the list price 

variable, 𝑃ℎ
𝐿𝐼𝑆𝑇. Given that price estimates were collected over a nearly 9-month period (with 

significant change in mortgage rates over the period), monthly fixed effects, 𝜙𝑡, are included in 

all models. Further, robust standard errors are used, clustered at the census block group, 𝑏, level.  

Our base model specifications include a set of housing and structural (𝑆) characteristics, and 

locational (𝐿) characteristics that initially performed well and avoided multicollinearity concerns 

(as checked with variance inflation factors [VIFs]). This base model was implemented with and 
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without inclusion of a dummy indicator variable (𝐿𝑐
𝑃𝐸𝑅𝑀𝐼𝐴𝑁) of whether a housing unit was 

located in one of Permian counties or one of the selected control counties: 

ln 𝑃ℎ𝑏𝑐𝑡
𝐿𝐼𝑆𝑇 = 𝛿 + 𝛼1𝑆ℎ

𝑆𝑄𝐹𝑇 + 𝛼2𝑆ℎ
𝑀𝐴𝑁𝑈 + 𝛼3𝑆ℎ

𝐴𝐺𝐸 + 𝛼4𝑆ℎ
𝐿𝑂𝑇 + 𝛼5𝑆ℎ

𝐵𝐸𝐷 + 𝛼6𝑆ℎ
𝑀𝑈𝐿𝑇𝐼−𝐺𝐴𝑅 + 𝛼7𝑆ℎ

𝐴𝐶

+ 𝛽1𝐿ℎ
𝐷𝐼𝑆𝑇 + 𝛽2𝐿𝑏

𝑀𝐸𝐷−𝐻𝐼𝑁𝐶 + 𝛽3𝐿𝑏
𝑃𝐶𝑇−𝑊𝐻𝐼𝑇𝐸 + 𝛽4𝐿𝑏

𝑃𝑂𝑃−𝐷𝐸𝑁𝑆 + 𝛽5𝐿𝑐
𝐴𝑉𝐺−𝑈𝐸

+ 𝛽6𝐿ℎ
𝑃𝑊 + 𝛽7𝐿𝑐

𝑃𝐸𝑅𝑀𝐼𝐴𝑁 + 𝜙𝑡 + 𝜖ℎ𝑏𝑐𝑡  

(5) 

Where ℎ indicates the individual house, in block group 𝑏, in county 𝑐, at time 𝑡. All subsequent 

models include the same variables for vector 𝑆 and 𝐿, except for 𝐿𝑐
𝑃𝐸𝑅𝑀𝐼𝐴𝑁, which is the indicator 

variable that is added and removed in various specifications. 

To evaluate the effects of wells and earthquakes, we added model specifications with a single 

variable of interest (equation (6)), and then with an interaction with 𝐿𝑐
𝑃𝐸𝑅𝑀𝐼𝐴𝑁 (equation (7)). 

This is shown for the example of all active wells within 2 km of a house (Table 14, model 3): 

ln 𝑃ℎ𝑏𝑐𝑡
𝐿𝐼𝑆𝑇 = 𝛿 + 𝛼𝑆 + 𝛽𝐿 + 𝛾1𝑊ℎ

𝑊𝐸𝐿𝐿2 + 𝜙𝑡 + 𝜖ℎ𝑏𝑐𝑡             (6) 

ln 𝑃ℎ𝑏𝑐𝑡
𝐿𝐼𝑆𝑇  = 𝛿 + 𝛼𝑆 + 𝛽𝐿 + 𝛾1𝑊ℎ

𝑊𝐸𝐿𝐿2 + 𝜈1(𝐿𝑐
𝑃𝐸𝑅𝑀𝐼𝐴𝑁 × 𝑊ℎ

𝑊𝐸𝐿𝐿2) + 𝜙𝑡 + 𝜖ℎ𝑏𝑐𝑡        (7) 

where the interaction term, 𝐿𝑗
𝑃𝐸𝑅𝑀𝐼𝐴𝑁  ×  𝑊ℎ

𝑊𝐸𝐿𝐿2, allows comparison of the effects of proximal 

well density on the price of housing units inside the Permian Basin counties compared to the 

control counties. The coefficient 𝜈1 measures the impact of 𝑊ℎ
𝑊𝐸𝐿𝐿2 within the Permian Basin. 

Since many of the collected variables both within and across the 𝑊 and 𝑄 vectors are highly 

correlated, our general strategy, with select exceptions, is to examine these individually for the 

initial results. 

We assess the marginal implicit prices (MIPs) for our focal variables. In the log-linear hedonic 

price function, the MIP for a continuous variable using 𝑊ℎ
𝑊𝐸𝐿𝐿2 as an example is given as:  

𝜕𝑃ℎ𝑏𝑐𝑡
𝐿𝐼𝑆𝑇

𝜕𝑊ℎ
𝑊𝐸𝐿𝐿2 = 𝛾1 × 𝑃ℎ𝑏𝑐𝑡

𝐿𝐼𝑆𝑇               (8) 

which can be interpreted as the percentage change in the housing unit price with a one-unit 

change in the explanatory variable of interest (𝑊ℎ
𝑊𝐸𝐿𝐿2). For a dummy indicator variable, the 

MIP is adjusted as follows, 100(𝑒𝑏𝑒𝑡𝑎 − 1), and provides the percentage change in the housing 

unit in the presence of the indicator variable (Taylor, 2017). Finally, for a variable of interest 

interacted with PERMIAN, the MIP is given as: 

𝜕𝑃ℎ𝑏𝑐𝑡
𝐿𝐼𝑆𝑇

𝜕𝑊ℎ
𝑊𝐸𝐿𝐿2 = (𝛾1 + 𝜈1𝐿𝑗

𝑃𝐸𝑅𝑀𝐼𝐴𝑁) ×  𝑃ℎ𝑏𝑐𝑡
𝐿𝐼𝑆𝑇             (9) 

When 𝐿𝑗
𝑃𝐸𝑅𝑀𝐼𝐴𝑁 = 1, the MIP is: 

𝜕𝑃ℎ𝑏𝑐𝑡
𝐿𝐼𝑆𝑇

𝜕𝑊ℎ
𝑊𝐸𝐿𝐿2 = (𝛾1 + 𝜈1) × 𝑃ℎ𝑏𝑐𝑡

𝐿𝐼𝑆𝑇                      (10) 
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In terms of a priori hypotheses, the standard expectation from a classic environmental economics 

perspective is that proximal density of active wells around a housing unit, the presence or 

magnitude of seismic activity (with the concern of human induction by UO&G development), 

and measures of localized air pollution (e.g., PM2.5) would all be potential negative externalities 

and reduce house prices. Thus, using the example of the density of all active wells within 2 km, 

against the null of no effect (𝛾1 = 0 ), the alternative hypothesis would be: 𝛾1 ≠ 0.  The question 

raised in the Introduction, and the mixed results found in prior HPM studies, is whether there 

might be a greater tolerance of the side effects in the Permian.  

Tolerating the potential negative externality would be shown by calculating the net effect of the 

variable of interest, say, well density 𝑊ℎ
𝑊𝐸𝐿𝐿2. Focusing on the Permian basin counties, 

(𝐿𝑐
𝑃𝐸𝑅𝑀𝐼𝐴𝑁 = 1), if the main effect  (𝛾1) plus the interaction effect (𝜈1) is not statistically 

different from zero or greater than 0; this would provide evidence of tolerance in the Permian 

counties; further, if 𝛾1 < 0  and statistically significant (representing the case in the control 

counties), but if there was a greatly reduced effect (𝛾1 + 𝜈1), then this would support the 

conclusions that consumers in the Permian are tolerating what is viewed as a negative externality 

in the control counties. 

Finally, the modeling approach or strategy includes the following robustness checks. First, we 

break out the Permian and control counties into split samples to allow examination of various 

model specifications separately for each set. Here we can directly compare the two samples, say, 

the estimation on the sign and significance of 𝛾1 from equation (6) for the hypothesis on well 

density effects. Second, 𝑃ℎ
𝐿𝐼𝑆𝑇 is replaced with 𝑃ℎ

𝑍, with the smaller available samples for the 

Zillow Zestimate. Third, the use of robust standard errors with clustering at the census tract level 

is replaced with spatial HAC errors, or Conley standard errors (Conley, 1999). Fourth, as final 

robustness check, a set of econometric models are estimated focusing on isolating injection and 

disposal wells as a potential negative externality. This is examined including an interaction term 

with public water (PUBWATER) for the overall sample, and separately for each of the 

subsamples. Absent a significant water quality monitoring network across our sampling region, a 

proxy is the subset of wells that present UO&G water contamination risks, which includes 

injection and disposal wells. 

6. Econometric Results and Analysis 

Econometric modeling results for the hedonic price functions, all in log-linear form, are 

presented in Tables 14 through 22. All econometric analysis was completed using Stata 17. From 

a general perspective, the econometric analysis shows that the ln 𝑃ℎ
𝐿𝐼𝑆𝑇 models generally fit well, 

with R2 measures ranging from around 0.6 to 0.7, and structural and location variables having 

expected signs and generally significant.18 

All model specifications include month fixed effects, and with the exception of Tables 20 and 21 

use clustered standard errors at the block group level. From the vector of possible structural 

variables collected, 𝑆, after evaluating correlations and collinearity, the final set used in all 

specifications include: 𝑆ℎ
𝑆𝑄𝐹𝑇

, 𝑆ℎ
𝑀𝐴𝑁𝑈, 𝑆ℎ

𝐴𝐺𝐸 , 𝑆ℎ
𝐿𝑂𝑇 , 𝑆ℎ

𝐵𝐸𝐷, 𝑆ℎ
𝑀𝑈𝐿𝑇𝐼−𝐺𝐴𝑅, and 𝑆ℎ

𝐴𝐶. Similarly, the 

 
18 In converting percentage effects into dollars, marginal implicit prices are calculated at the median price measure 

for the appropriate sample or sub-sample. 
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set of location characteristics consistent across all models include: 𝐿ℎ
𝐷𝐼𝑆𝑇 , 𝐿𝑏

𝑀𝐸𝐷−𝐻𝐼𝑁𝐶 ,
𝐿𝑏

𝑃𝐶𝑇−𝑊𝐻𝐼𝑇𝐸 , 𝐿𝑏
𝑃𝑂𝑃−𝐷𝐸𝑁𝑆 , 𝐿𝑐

𝐴𝑉𝐺−𝑈𝐸 ,  and 𝐿ℎ
𝑃𝑊.   

Table 14 presents the baseline models 1 and 2, (the S and L vectors of variables, with and 

without and indicator variable for the Permian Basin) while models 3 and 4 add total active well 

data within 2 km of a home (ALLWELLS-2KM) and 1 km (ALLWELLS-1KM). Table 15 builds 

on Table 14 and incorporates extended models with environmental variables. The remaining 

tables contain robustness checks. Table 16 presents modeling results using the subsample of 

houses from the Permian counties only, while Table 17 uses the subsample of houses from the 

control counties only. Tables 18 and 19 replicate 14 and 15 but use the natural log of the 

Zestimate (ln 𝑃ℎ
𝑍) as the dependent variable. Returning to ln 𝑃ℎ

𝐿𝐼𝑆𝑇 as the dependent variable, 

Tables 20 and 21 contain results using Conley standard errors to correct for potential spatial 

autocorrelation.19 As a final robustness check, Table 22 presents results when attempting to 

isolate special concerns with water contamination (focusing on the subset of active injection and 

disposal wells, and interacting the presence of public water supply). 

6.1. Full Sample Results  

Using the overall sample, across all models in Table 14 and 15 an additional square foot of living 

space is shown to significantly increase the listed price of a home by 0.03%, which is stable 

across samples. When using the overall sample median 𝑃ℎ
𝐿𝐼𝑆𝑇 this equates to $82.5/sqft, or 

$127.5/sqft at the mean value. Also significant at the 0.001 level, manufactured homes, MANU, 

are listed 26-29% less than non-manufactured homes; using the midpoint (27.5%), for the overall 

sample this equates to ~$76,000 lower list price for the median home or ~$116,000 for the mean. 

Estimated coefficients on MULTI-GARAGE and ACCENTRAL are both consistently and 

significantly positive (0.001 level) across all specifications and range from 7-9% (or ~$22,000 

for the median home and ~$34,000 for mean list price home, evaluated at 8%) for having 

multiple garages to 12.8-15.8% (or ~$39,000 for the median home and ~$61,000 for mean list 

price home, evaluated at 14.3%) for having “central” in the air conditioning description. Finally, 

an additional BEDROOM significantly increases the listed price by 4.5-6% (or ~$14,000 for the 

median home and ~$22,000 for mean list price home, evaluated at 5.25%). As measures of 

construct validity, these all appear to line up well with market evidence. 

In both tables, the average unemployment rate in the county corresponding to a home (AVG-UE) 

is a statistically significant (0.001 level) and negative determinant of the listed price of a home. 

Increases in employment are expected to be a positive demand shifter for home values. The 

magnitude of the effect across model specifications in Table 14 and 15 shows that an additional 

percentage point reduction in AVG-UE increases the listed price of a home by about 8-10% 

(except for the Table 15, model 2, which has collinearity issues). Estimated coefficients on DIST 

are positive and significant (0.05 level) across both tables indicating the farther a house is from a 

main road (highway or principal arterial road) the higher the listed price. Although they have 

small marginal effects (< 1%), the Census block group characteristics of median household 

 
19 Spatial autocorrelation means the error terms in our regressions are correlated with houses that are geographically 

close to them. This correlation violates a basic econometric assumption when using OLS and we attempt to correct 

for the potential violation using the Conley standard errors with a Stata package (reg2hdfespatial) that treats houses 

within a specified distance of each other as being related. 
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income and percentage white, MED-HINC and PCT-WHITE, are each significant (0.01 level) 

and positive determinants in Table 14 and 15. This is consistent with prior research findings 

(e.g., Howell and Korver-Glenn, 2020). Population density in the Census block group 

corresponding with a home (POP-DENS) is a negative and significant (0.001 level) determinant 

across all models in Tables 14 and 15, consistent with Acolin et al. (2022).  

Whether a home is within the service boundary of a public water system (PUBWATER) is 

interpreted as likely indicator that the house is on piped water. The estimated coefficient on 

PUBWATER is positive and significant (at either the 0.01 or 0.05 level) in the full sample results 

indicating consumers value access to public water. The average of the estimated coefficients is 

0.0475, corresponding to a $13,062 effect on the median listed home in the overall sample. The 

estimated coefficient on PERMIAN indicates that homes are valued ~28% less in the Permian 

versus houses in the control counties. 

All of the above results on the structural (S) and locational (L) characteristics are consonant with 

either observed market evidence or prior research. From here the discussion of results turns to 

possible negative externalities: well density, air pollution and earthquakes. 

The well density variables are included Table 14 models 3-4 and Table 15 models 3-4, which 

focus on well density with 2 km of a house. Density within 1 km (Table 14 model 4) produces 

similar results on sign and significance, and 2 km (1.24 miles) density is a common measure in 

HPM studies on UO&G. Only Table 15 model 4 contains the Permian counties indicator variable 

(PERMIAN). For all the models the effect of an additional well within 2 km is negative and 

significant (0.01 or 0.05 level). However, in Table 15, model 4 the interaction term PERMIAN × 

ALLWELLS-2KM is positive and significant and similar in magnitude to the negative 

coefficient on ALLWELLS-2KM. When combined, this greatly mutes the comparable effect; the 

result is a small net negative effect of -0.12% for an additional well; this equates to a marginal 

implicit price of -$293 for an additional well, evaluated at the median listed price in the Permian 

counties sample. This compares to -0.82% or a marginal implicit price of -$2,951 for an 

additional well, evaluated at the median listed price for the control county sample houses. 

However, Table 15, model 4 exceeds the VIF cutoff of 10, indicating multicollinearity, for 

ALLWELLS-2KM and the interaction with PERMIAN. This problem is addressed in the 

robustness checks using separate subsamples for Permian and controls. For perspective, the 

percentage effect of an additional well in the control counties, with an average of less than one 

proximal well with 2 km, is roughly 7 times larger (or 10 times larger translated into marginal 

implicit price effects for median priced homes in the different samples) than in the Permian 

Basin counties where there are almost 15 proximal wells within 2 km of the home on average. 

This supports the general hypothesis that the housing market within the Permian Basin may be 

much more tolerant of active well density than in the control counties.  

Table 15 extends model specifications to include the air pollution (PM2.5) variables. Model 1 

includes both PM2.5 and ΔPM2.5. In model 1, only ΔPM2.5 is negative and significant (0.001 

level) implying in this specification it is a negative externality. However, when the PERMIAN 

indicator variable is included as an interaction term with each of the air pollution measures in 

model 2, both the estimated coefficients for PM2.5 and ΔPM2.5 are negative and significant. For 

houses in the Permian the net effect is -0.0064 for ΔPM2.5, (i.e., the negative effect is muted in 

the Permian). However, the concern here is that in model 2, the VIF greatly exceeds the 
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commonly recommended cutoff of 10 indicating multicollinearity (as caused by the interaction 

term with both PM2.5 and ΔPM2.5) and raises questions about the conclusion. Alternatively, as 

discussed later, a robustness check is pursued where the interaction term is dropped and separate 

models for each sample are used to investigate air pollution effects. 

Continuing with Table 15, in models 5 and 6 the potential earthquake effect is investigated, using 

the count of earthquakes greater than magnitude 1 within 10 km of a home since 2010. While the 

estimated coefficient is negative and significant (0.10 level) in model 5, the inclusion of the 

interaction term in model 6 makes both variables insignificant. Also concerning here in model 6 

is the VIF exceeds 10 indicating multicollinearity (caused by EQS-MAG1 the interaction term 

with PERMIAN). Discussed later, a robustness check is pursued where the interaction term is 

dropped and separate models for each sample are used to investigate earthquake effects. 

There is no evidence that this earthquake measure (like that used in other HPM studies) is a 

significant determinant of listed prices for homes in the Permian Basin (or the control counties).  

6.2. Subsample Results 

As a first robustness check, econometric models are applied separately to the Permian counties 

sample (Table 16) and control counties sample (Table 17), which demonstrate a very similar 

range of R2 measures for goodness of fit. To start, results for the estimated coefficients on the 

variables SQFT, AGE, and BEDROOMS in the separate samples are similar in sign, 

significance, and magnitude to the overall sample. 

For a number of variables, while the sign and significance do not change, and regardless if the 

effect is positive or negative on the listed price, there is a much more muted (smaller in 

percentage effect on price) for homes in the Permian counties sample relative to the control 

county sample. 

The estimated negative and significant (0.001 level) price effect of a manufactured home 

(MANU) differs starkly between the two samples. There is roughly a 57% reduction in the list 

price associated with a manufactured home in the control county sample (Table 17), but a much 

more muted effect—less than half the size—of roughly 25% in the Permian counties sample 

(Table 16). Other variables with stronger negative impacts in the control county sample are 

AVG-UE and POP-DENS.  

The estimated positive and significant (0.001 level) price effect of being located within a public 

water system (PUBWATER) differs between the two samples. The effect on the listed price is 

about 3.5% in the Permian sample (Table 16), but this more than doubles in the control county 

sample at about 6.5% . Other variables with stronger positive impacts in the control county 

sample are ACCENTRAL, MED-HINC and PCT-WHITE. 

Turning to the investigation of potential negative externalities, as shown in Table 17 well density 

within 2 km of a home has a negative and significant (0.10 level) effect of -0.73% on the listed 

price in the control counties; at the median home price in the sample, this equates to a marginal 

implicit price of -$2,627 for an additional well. The evidence supports the hypothesis of well 

density as a negative externality. However, for the Permian counties sample (Table 16), the null 
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hypothesis of no effect cannot be rejected; the estimated coefficient on ALLWELLS-2KM is not 

significantly different from zero.  

Additionally, the air pollution variables PM2.5 and ΔPM2.5 are included in model 2 for each of 

Tables 16 and 17. For the Permian counties sample, the estimated coefficient on PM2.5 has a 

statistically significant negative effect with a marginal implicit price of -$5,633. This is the first 

evidence of a negative externality in the Permian counties sample. However, the change in PM2.5 

specifically attributable to oil and gas production in the Permian (ΔPM2.5) has no significant 

effect; the null hypothesis cannot be rejected. In contrast, the estimated coefficient on PM2.5 has 

no effect in the control counties group while ΔPM2.5 has a strong and statistically significant 

negative effect. To summarize, while there is evidence of a negative externality from air 

pollution emissions on the homes within the Permian Basin, it is not from oil and gas production 

in the Basin. 

Finally, there is no evidence in either the Permian counties sample (Table 16) or the control 

counties sample (Table 17) of any significant externality on listed price of home from the 

earthquake measure. 

In conclusion, the subsample modeling results are consistent with the housing market in the 

Permian exhibiting a tolerance of the side effects from oil and gas production. 

6.3. Zestimate Results 

As a second robustness check, Tables 18 and 19 present results from log-linear price functions 

when replacing the listed price (ln 𝑃ℎ
𝐿𝐼𝑆𝑇) dependent variable with the Zestimate (ln 𝑃ℎ

𝑍), and then 

replicating prior modeling. The structural and location variables maintain their signs but 

estimated coefficients for a few variables, including LOTACRES, BEDROOMS, DIST, and 

PUBWATER, lose their significance in Table 18 and in some models in Table 19.  

In Table 19 ALLWELLS-2KM is only a significant negative determinant in model 3 when 

PERMIAN is excluded. The air pollution variables PM2.5 and ΔPM2.5 are significant and 

negative in model 2 but the interactions with PERMIAN are positive (and greatly mute their 

effect in the Permian Basin). The interactions combined with the main effects estimate indicate 

that in the Permian a one unit increase in PM2.5 (which corresponds with an approximately 

16.7% increase in the mean concentrations in the Permian) leads to a 2.46% increase in home 

values while a 1 unit increase in ΔPM2.5 is associated with a less than 1% decrease in the 

Zestimate price, 𝑃ℎ
𝑍.20 Finally, there is no evidence of a significant negative externality due to 

seismic activity. Again, the models with the PERMIAN interactions show evidence of a high 

VIF. 

In summary, the general pattern of conclusions (e.g., tolerance of the side effects within the 

Permian) is robust to using the Zestimate (ln 𝑃ℎ
𝑍) as the dependent variable. 

 
20 Again, while STATA did not reject the model due to multicollinearity, there are concerns with a VIF>10 for this 

model with interaction terms for between the air pollution variables and the indicator variable for the Permian Basin. 

While not presented here, split sample analyses draw qualitatively similar conclusions when using ln 𝑃ℎ
𝑍 as 

dependent variable in place of ln 𝑃ℎ
𝐿𝐼𝑆𝑇. 



 33 

6.4. Conley Standard Errors 

As a third robustness check, Tables 20 and 21 present modeling results with ln 𝑃ℎ
𝐿𝐼𝑆𝑇 as the 

dependent variable and replacing the clustered standard errors with Conley standard errors 

(Conley, 1999). This allows a correction for potential spatial autocorrelation. Across different 

model specifications, initial results indicate similar signs and magnitudes on estimated 

coefficients as in Tables 14 and 15. In summary, there is no alteration in the general pattern of 

conclusions (e.g., tolerance of the side effects of UO&G within the Permian). 

6.5. Piped Water and Water Contamination Risks from Injection and Disposal Wells 

A special concern in reviews of HPM studies on UO&G development effects is failing to correct 

for piped water (which mitigates concerns with water pollution). Absent a significant water 

quality monitoring network across our entire sampling region, a proxy is the subset of wells that 

present particular UO&G water contamination risks. This includes injection and disposal wells. 

Prior studies have found these wells to be important to look at in the context of public water 

(Balthrop & Hawley, 2017; Gopalakrishnan & Klaiber, 2013; Mothorpe & Wyman, 2021; 

Muehlenbachs et al., 2012, 2015). Thus, as a final robustness check, Table 22 presents 

econometric results that focus on isolating injection and disposal wells as a potential negative 

externality. This is examined including an interaction term with public water (PUBWATER) for 

the overall sample, and separately for each of the subsamples. Note that injection and disposal 

wells are extremely rare in the control county sample; the variable INJ&DISP-2KM has an 

average density within 2 km around a house of 0.05 (standard deviation of 0.26) in the control 

counties sample, versus an average of 1.71 (standard deviation of 7.58) in the Permian counties 

sample. There are only 83 injection and disposal wells in the more than 21,000 square miles of 

our control counties.  

 

Consistent with prior results, all specifications in Table 22 have significant and positive values 

for whether a house is within the boundaries of a public water supply system (PUBWATER). For 

the overall sample (model 1), the inclusion of a density variable for injection and disposal wells 

(INJ&DISP-2KM) has a significant (0.001 level) and negative effect.  Continuing with the 

overall sample (model 2), when an interaction term is added (PUBWATER × INJ&DISP-2KM) 

the effect of well density is not significantly different from zero. The implication is that 

conditional on a house being on piped water, the potential negative externality of an additional 

injection and disposal well is eliminated. When looking at the split samples (model 3 is the 

control county sample and model 4 is the Permian counties sample), this same general 

conclusion holds. Absent being on piped water, the density of injection and disposal wells has no 

effect in the Permian Basin but is a negative externality in the control counties. 

 

Again, results from this robustness check fit within the general pattern that the Permian Basin 

exhibits a tolerance for the side effects of UO&G activities. 
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7. Discussion and Conclusions 

Boosted by technological change (Popova & Long, 2022) and massive capital investment into 

the region (Collins, 2021),21 the Permian Basin has experienced more than a decade long boom 

in UO&G development in addition to existing O&G activity, with predictions for extending 

significantly (Gaswirth et al., 2018). In addition to the boosts in employment, various earnings 

(Maniloff & Mastromonaco, 2017) and economic multiplier or spillover effects in the region 

(Bown et al, 2016; Feyrer et al. 2017; Wang, 2020), taxes and royalties from O&G and UO&G 

development on public lands generate significant public revenue that is distributed more broadly 

outside the region. For example, recent estimates indicate that roughly 30% of the annual general 

fund (or annual operating budget for all state entities), and 40% of annual total public finance 

revenues in NM comes from general O&G development (McKay, 2023; Sarkar, 2023).  

It is imperative to focus on the region that is generating these benefits and try to understand what 

is happening economically, and to the environment, both in the near and long term. From the 

many possible dimensions of effects (e.g., transportation systems, labor markets, net-migration, 

public health, air and water quality, etc.), this investigation analyzes an important current cross-

sectional slice of the housing market in the Permian Basin. Specifically, the objective of this 

analysis was to employ the hedonic pricing method (HPM) to econometrically decompose the 

effects of various attributes on permanent residences. Arguably, the boom has extended long 

enough to have capitalized effects, including any possible negative environmental externalities.  

In their recent research review, Krupnick and Echarte (2017, p. 1) note: 

Changes in housing prices as a result of unconventional oil and gas development are 

useful indicators of community perceptions about the benefits and damages of such 

development, as they aggregate and monetize the preferences of home buyers and sellers. 

Unsurprisingly, there are a significant number of HPM studies on the effects of proximity or 

density (typically within 1 or 2 km) of O&G wells, with a focus on hydraulic fracking, shale gas, 

and UO&G development boom areas (e.g., PA, CO). But there is a paucity of HPM studies in the 

Permian Basin. Sales price non-disclosure clearly complicates research efforts to apply HPM in 

states like NM and TX (Berrens & McKee, 2004; Bollum, 2021; Kalfrin, 2021; Williams, 

2021).22 To overcome that hurdle, this analysis employs webscraping of microlevel Zillow list 

price and Zestimate information (and housing characteristics) for 2022-2023, and matches that 

 
21 Collins (2021) documents more than $80 billion capital investments in upstream UO&D development in the 

Permian Basin for the period 2016-2018, which is described as unprecedented in the industry in terms of scale and 

velocity.  
22 The authors are not aware of any published, peer-reviewed HPM property studies for NM using individual house 

level publicly available sales price data (although it’s certainly possible that a local Realtor Board ® could have 

released such information in some case). For further discussion of a possible recent case with purchased proprietary 

data see footnote 14. But this case is not for the Permian. For TX, there are several HPM studies of UO&G of note. 

Weber et al. (2016) use the ZILLOW median price index data for Zip codes (over 10+years), and focus on Barnett 

Shale play in TX (counties west of Dalllas/Ft. Worth, but not connected to the Permian Basin), Also for the Barnett 

Shale region, Balthrop and Haley (2017) do use individual level sales prices for their HPM; This large sample 

urban-focused study for a single county covering (Tarrant) Ft. Worth  uses individual sale level MLS data – so the 

presumption is this was released by local Realtor Board ®, with the data appearing to be 4-5  years old. But neither 

of these are for the Permian.  
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with a variety of geospatial information, at varying scales. This includes controlling for a variety 

of Census based information (e.g., population density), and county-level unemployment. In 

addition to geo-located well information of varying (highly correlated) types, we collected 

environmental variables on seismic activity, and air pollution (PM2.5 from satellite data). On the 

latter, we make use of state-of-the-art source-receptor modeling (InMAP) and the recent analysis 

by Goodkind et al. (2023) to isolate the change in PM2.5 attributable to conventional and 

unconventional O&G sources. 

Various reviews of housing market effects (e.g., Krupnick and Echarte, 2017; and Loomis and 

Haefele, 2017) make clear that that there can be pathways for both positive and negative effects 

from UO&G development in a boom region. HPM applications must attempt to disentangle these 

effects. To help do that, this analysis of the Permian Basin (55 counties) selected a set of 18 

control counties in eastern NM and western TX (but outside the Permian), which were similar for 

a set of Census-based socio-economic/demographic variables (evaluated for 2009 and 2019) but 

highly dissimilar in their exposure to, and economic reliance on county-level O&G production 

(i.e., an order of magnitude difference). 

Our modeling strategy focuses on the use of available list price information 𝑃ℎ
𝐿𝐼𝑆𝑇as the 

dependent variable, which has a much larger available sample than the Zillow values estimate of 

Zestimate, 𝑃ℎ
𝑍. However, the two measures are shown to be highly correlated, and as a 

robustness check, results from both are qualitatively very similar. 

The econometric analysis show that the 𝑃ℎ
𝐿𝐼𝑆𝑇 models generally fit well, with R2 measures 

ranging from around 0.6 to 0.7, and structural and location variables having expected signs and 

generally significant. For example, the median valued manufactured home was anywhere from 

roughly 25% to >50% lower valued (with the lower percentage effect inside the Permian 

counties), and the presence of piped water was shown to always be a significant positive 

determinant of housing value varying across the range of 3% to 7% (with the lower percentage 

effect inside the Permian). Like other HPM studies of UO&G development (e.g., Bennett and 

Loomis, 2015 and He et al., 2017), we control for the unemployment rate in a county and show it 

to be significantly negative, i.e., this is consistent with positive employment changes (and 

income effects) shifting housing demand and raising the expected price.  

Controlling for fixed effects by month of data collection (2022-2023), the otherwise cross-

sectional econometric analysis focuses on three sets of variables that would be hypothesized to 

have negative externality effects on house prices. Due to high multicollinearity both within sets 

and across some sets, our strategy was to generally select and evaluate these externalities 

separately. 

The first potential negative externality investigated is local air pollution in the form of emissions 

of PM2.5, and separately for the change in PM2.5 attributable to O&G production in the Permian. 

To start, these two variables are evaluated together in model specifications. In the full sample 

model (with Permian interaction terms), results show that negative air pollution effects are 

greatly muted in the Permian Counties. But this model raised multicollinearity concerns. Thus, 

turning to the split samples, when evaluating for the Permian counties and the control counties 

samples separately, results show that background PM2.5 (which may be coming from sources 

outside region) is a significant negative externality for the Permian Counties, but the isolated 
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effect of the change in PM2.5 specifically attributable to O&G production in the Basin is not 

significantly different from zero. In contrast, this change in PM2.5 attributable to O&G production 

is a significant negative amenity in the control county sample, where some of them lie in the path 

of prevailing wind distribution, as shown by Goodkind et al. (2023). So, while O&G production 

pollution is causing a negative externality in the regional housing market, it is not doing so 

specifically in the Permian itself (rather it is spilling into some nearby counties). 
 

The second potential negative externality investigated is seismic activity, where following from 

recent HPM research (Cheung et al., 2018; Metz et al., 2017; Mothorpe & Wyman, 2021) we use 

GIS to create four separate variables. We find no evidence of a significant negative effect on 

housing prices in the Permian from seismic activity (the count of earthquakes since 2010 of 

magnitude 1 or greater).  

The third expected negative externality measure investigated, as focused on in HPM research 

into UO&G development, was well density. Data was collected on various types of active wells 

(totaling more than 220,000) and combined with GIS to create well count densities within both 1 

km and 2 km concentric circles of a house (consistent with prior studies). Across our main 

approaches and all robustness checks, for both 2 km and 1 km densities, the evidence supports 

the argument that the effect of well density proximal to a house is greatly muted if not eliminated 

(e.g., in the split sample case) in the Permian Counties (in contrast to the control counties). 

As a general conclusion, the econometric results provide evidence that for the UO&G boom in 

the Permian, housing markets may reflect a kind of tolerance for the side effects. Environmental 

externalities are either eliminated or greatly reduced in their marginal implicit price effects. We 

evaluate both with a combined sample, and with separate modeling for the Permian and Control 

counties samples. This tolerance outcome is especially clear for measures of the density of total 

active wells surrounding a residence, which has been a primary focus of prior HPM studies.  

To help put in context, Goodkind et al. (2023) show significant monetized damages from the 

health effects of changes in PM2.5 (inside and especially outside the region) attributable to 

UO&G activities; yet the region overall is not shown to be out of attainment with federal PM2.5 

emissions standards. Likewise, human induced seismic activity in the Permian may not be as 

significant yet as observed for UO&G development elsewhere (e.g., Oklahoma) (Cheung et al., 

2018; Mothorpe & Wyman, 2021). Not to diminish their importance, but there appears to be a 

relative tolerance at their current levels as they are capitalized into Permian housing markets.  

Such evidence is consistent with arguments that in this extraction-intensive region, residents may 

have a kind of tolerance for the side effects, as the region experiences significant gains in 

employment, earnings, and tax revenues from UO&G development (Sarkar, 2023).  

Our evidence of increased tolerance for the side effects for counties within the Permian Basin is 

consistent with various pieces of information; this includes some surveys (e.g., Bouchet et al., 

2018) and expressed public/political sentiment from within O&G development areas (e.g., as 

noted in our Introduction). Of note, Paydar et al. (2016) find that state adoption of significant 

impact fees for UO&G activities, and redistributed back to counties and municipalities in 

Pennsylvania (PA) increased expressed public support within regions that received significant 

revenues. Campbell et al. (2020) find that for Oklahoma survey respondents while induced 

seismicity from deep well re-injection of produced water has “catalyzed pushback against oil and 
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gas development,” risk perceptions are shaped by family considerations (employment 

connections), community context, exposure level and immediacy. Perhaps, most convincingly, it 

is also supported by 2018 precinct-level voting analysis for shale gas development in Colorado 

(CO) (Raimi et al., 2020). CO’s failed Proposition 112 would have imposed very large setback 

requirements on new O&G activity. Raimi et al. (2020) show that partisan affiliation correlated 

strongly with support for O&G development. Further, voters in precincts with higher O&G 

activity were more supportive of O&G development (but varying with the rate of development). 

The important caveat about our results is that what holds now may not hold going forward (e.g., 

as critical thresholds are passed). Further, it is possible that many public health concerns may be 

poorly understood, and therefore are not being capitalized into housing markets. 

There are also limitations to our HPM analysis, beyond the absence of direct sales price 

information. To date, two general gaps in the HPM literature on UO&G development effects are: 

(i) the sometimes absence of controls for piped water; and (ii) private lease royalty information. 

While we do not have detailed water quality information for houses, we control for the presence 

of a public water systems (i.e., which we presume correlates with piped water) and show it to 

always be a significant positive determinant of housing value. However, a limitation of our 

analysis is the absence of any detailed control for UO&G production royalties from private 

mineral leases attached to any of the houses in our collected sample. On private lands, this lease 

information is proprietary and can be significant (see Brown et al., 2016; Covert and Sweeney, 

2023). Its absence remains a general gap in the HPM literature for UO&G effects.  

It is possible that a decade plus into the boom for many news sales these lease royalties or claims 

may be separated and no longer appurtenant to the property (see Metz et al., 2027). But lease 

payments to property owners is certainly a possible mechanism or avenue for the observed 

tolerance of side effects. Similarly, He et al. (2017) characterize such royalty payments, offered 

by producing UO&G firms as an implicit Coasian bargaining mechanism for offsetting possible 

externality effects. Another possible mechanism facilitating a tolerance for side effects is if a 

growing or disproportionate share of house sales are moved into medium- or shorter-term rental 

markets (i.e., a large share of buyers never expect to live in the house they buy). We have not 

explored this question. 

There is clearly room for additional refinements in the analyses, including exploring additional 

price determinants.  One example is alternative pollution measures. A second example is 

pursuing avenues for incorporating information about lease royalties. While matching 

information to specific land parcels is unlikely, it may be possible gather more aggregated 

information (e.g., county totals). Since many royalty owners are known to commonly leave a 

location, this suggests other more general indicators in a boom area like the owner occupancy 

rate in a census unit.  Finally, while likely to be correlated with median household income, crime 

and school ratings are additional possibilities. These explorations are left to future research. 

However, it is important to try to place the current evidence in context and discuss its policy 

relevance.  

The general policy context is well characterized by Maniloff and Mastromonaco (2017, pg. 62):  
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Local and regional policy makers (and in some cases, voters) must balance the potential 

local environmental risks of extracting the oil and gas contained in shale with the 

potential local economic gains that might accrue from increased industry employment, 

upward pressure on local incomes, and extraction royalty payments.  

Part of this balancing is respecting local community self-determination, and the inherent tension 

between broader efforts to transition to renewable energy sources against sometimes local 

interest to protect economic development of nonrenewable energy resources in their region.23  

More broadly, even when significant elements of a community are disposed towards supporting 

UO&G development, there is a policy case for a public obligation to help manage and mitigate 

the health, environmental and community impacts (Wang, 2020). This argument is underlined by 

arguments that there are significant regional spillover effects from the economic benefits (Wang, 

2020), and that all state and US residents are benefiting economically to some degree from the 

moving wave of the post-1990s UO&G development revolution, with its upward pressure on 

state and national economies (IHS, 2013; Maniloff & Mastromonaco, 2017). However, in 

addition to the broader climate damages of continued reliance on fossil fuels, that boom can 

come with localized costs and damages.  

Morton and Kerkvliet (2013) and Morton et al. (2015 as cited in, Morton and Kerkvliet, 2020) 

promote the notion of responsible oil and gas development, which includes managing the rate of 

activities and mitigating negative impacts, including future ones. Of particular concern is when 

the boom goes away for a region. As various sources have explored, there is the potential for a 

resource curse, where the resource rich region is left with reduced ex post economic 

development resulting from the intensive focus on the extractive industry (see Collins, 2021; 

Haggerty et al., 2014). The concern with any region experiencing a boom in UO&G production 

is the bust that can come when the boom goes away. In contrast to Haggerty et al. (2014), recent 

evidence does not support the presence of a resource curse on economic measures due to the 

UO&G development boom to date in the US, where the broader economy may be too diversified 

(Maniloff and Mastromonaco, 2017; Solarin, 2020). This does not rule out that a localized 

resource curse might not be observed in a more regional context like the Permian (Collins, 

2021), when the entire region only contains about 1.3 million people. Further, we argue that a 

particular concern with a dense well-field region is any social and environmental legacy costs 

after the production plays out. 

To help prevent such legacy costs, in addition to spatial setbacks as discussed in the Introduction, 

policy or regulatory tools can include greater use of specific impact fees, increased penalties for 

spills, and higher bonding requirements for decommissioning wells, etc. While beyond the scope 

of this analysis, there are important inter-related research threads on: 

 
23 This notion of community self-determination, and its complexity, returns us to the issue of spatial setbacks from 

the Introduction section. As a current example, in the June 2023 case of a 10-mile buffer around Chaco Canyon in 

northwestern NM (and the San Juan Basin), the federal government was clearly caught off guard by the clash 

between tribal interests. Some lessees objected to losing their right to lease their lands within the buffer (Boetel and 

Montoya Bryan, 2023). 
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(i) the environmental legacy externalities and significant decommissioning costs of 

wells, which are often under-bonded (Raimi et al., 2021; Weber et al., 2021; Kaiser, 

2023) 

(ii) the emergent environmental justice questions surrounding UO&G development, and 

what communities bear any disproportionate costs (e.g., Kroepsch et al., 2019; 

Johnston et al., 2020; Black et al., 2021; Clark et al., 2021; Lieberman-Cribben et al, 

2022; Proville et al., 2022; Fry et al. 2023). 

With respect to equity, there is also the broader question of how the public revenues (e.g., the 

various taxes, leases on state lands, and royalty payments from O&G production on public lands) 

are distributed, especially back to the resource extraction intensive communities themselves (see 

Sarkar, 2023). Relatedly, there is the question of how collected public revenues are used to 

improve monitoring (e.g., air and water quality, industrial spills, roadway accidents, citizen 

complaint records, etc.) and ensuring public data availability requirements.  

For the case of NM, we highlight that given that real estate property sales are subject to market-

based taxation under the NM state constitution, there is a clear public nexus in making property 

sales prices public information (Berrens & McKee, 2004).24 Arguments in defense of sales price 

non-disclosure center on privacy protection (see discussions in Morey, 2010; Bollum, 2021; 

Kalfrin, 2021; Williams, 2021). Arguments against protecting non-disclosure include potential 

tax revenue leakages, tax inequities, basic market efficiency (reducing uncertainty and 

maximizing producer and consumer surplus) and optimizing private sector investment response 

in adding new supply. Stiglitz (2003) argues that information dispersion is a key role for 

government, as this information shapes economic behavior and choices. With respect to moving 

to mandating full public disclosure for real estate sales prices, the argument can be made that 

public interest outweighs privacy concerns.25 The boom-and-bust context of UO&G 

development (e.g., the magnitude and velocity of capital investment in the Permian Basin) likely 

only exacerbates the effects of asymmetric information. 

States vary in the degree to which they implement real estate sales price non-disclosure 

(Dornfest et al., 2019). Thus, it is important to note that in NM, post 2004 (see Berrens and 

McKee, 2004; and Bollum, 2021), changes in state law required that a real estate sales deed must 

be recorded with the county assessor’s office and can be used in setting tax assessments. This 

disclosure to the county assessor includes all economic components that affects the sale (and thus 

presumably would include mineral lease information). However, this sales price information is 

not allowed to be publicly available, in fact it is mandated that it not be (see Bollum, 2021). As a 

recommended policy change, one can imagine a compromise middle ground where an avenue is 

created so that state university researchers and other public employees might be allowed access 

 
24 A similar argument can be made be made with respect to water in NM, where water resources are publicly owned 

under the state constitution, with use rights permitted. While improved water transfers are touted as an important 

flexibility mechanism, water transfer prices are not public, thus inhibiting efficiency and responses to scarcity. 
25 In the exogenous shock of an O&G development boom there will be housing market effects, and thus property 

assessments and ad valorem tax revenues effects. To wit, property taxes commonly constitute a large share of county 

revenues, and evidence on tolerance of side effects might mean the property values are not being negatively 

affected; however, on the counter side, sales price non-disclosure likely leads to tax revenue leakages (see Berrens 

and McKee, 2004; Morey, 2010; Bollum, 2021) 
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to property sales records for research purposes. Various federal census products commonly 

manage such access and restrictions. 

Local governments and regions will continue to wrestle with how to affect the magnitude and 

rate of UO&G development. Communities may well come to different answers, and levels of 

tolerance. Economists and other researchers can play a role in providing information about past 

and expected effects. To help inform public deliberations, ideally, future multi-year, GIS-based 

housing market analyses, in UO&G activity areas and elsewhere, would be able to use publicly 

available sales price data, tracked over time and matched to detailed housing characteristics, 

along with a much denser web of public information on air and water quality monitoring, etc. 

Variables that might change across a boom (traffic, road accidents, fatalities, crime, temporal 

variation in human induced seismic activity, etc.) could be connected to housing markets.  
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9. Figures 

 
Figure 1: Oil production in the Permian Basin in millions of barrels of oil. Sources: NM Oil 

Conservation Division (2023), Texas Railroad Commission (2023), and authors’ calculations. 
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Figure 2: Natural gas production in the Permian Basin in trillions of cubic feet (TCF). 

Sources: NM Oil Conservation Division (2023), Texas Railroad Commission (2023), and 

authors’ calculations. 
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Figure 3: Annual Revenue from oil and gas produced in the Permian Basin. Note: All dollar 

amounts adjusted to 2022. Sources: NM Oil Conservation Division, the Railroad Commission of 

Texas, American Institute for Economic Research, U.S. EIA (2023c. 2023d) and authors’ 

calculations.  
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Figure 4: Distribution of average annual employment level location quotient of NAICS 21 

(mining, quarrying, and oil and gas extraction) in NM and TX for 2009 (pre-boom). Notes: 

The location quotient measures the concentration of employees in NAICS 21 relative to the 

concentration of employees nationwide employed in NAICS 21. A value equal to 1 indicates the 

same number of employees per sector as the U.S; values >1 indicate more employees are in the 

sector than the rest of the U.S. Counties without borders are missing data. Sources: U.S. BLS 

(2023), Census TIGER files, ArcMap, and authors’ calculations. 
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Figure 5: Distribution of average annual employment level location quotient of NAICS 21 

(mining, quarrying, and oil and gas extraction) in NM and TX for 2022 (during-boom). 

Notes: The location quotient measures the concentration of employees in NAICS 21 relative to 

the concentration of employees nationwide employed in NAICS 21. A value equal to 1 indicates 

the same number of employees per sector as the U.S; values >1 indicate more employees are in 

the sector than the rest of the U.S. Counties without borders are missing data. Sources: U.S. BLS 

(2023), Census TIGER files, ArcMap, and authors’ calculations. 
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Figure 6: Distribution of the sample housing units with a LISTPRICE geolocated in the 

selection region. Notes: The geolocation for the 6,808 houses is done with ArcMap. Sources: 

Zillow, ArcMap. 
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Figure 7: Distribution of sample housing units with a ZESTIMATE geolocated in the 

selection region. Notes: The geolocation for the 2,956 houses is done with ArcMap. Sources: 

Zillow, ArcMap. 
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Figure 8: Delineation of public water service areas for NM and TX. Sources: Texas Water 

Development Board, the Office of the State Engineer, and ArcMap. 
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Figure 9: Construction of well count densities from various distances from a house. Note: 

While 5 rings are shown our models focus on the 1 km and 2 km rings. 
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Figure 10:  Oil and gas wells in the Permian basin and surrounding region. Sources: 

ArcMap, Railroad Commission of Texas, NM Oil and Gas Conservation Division. 
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Figure 11: Injection and disposal wells distribution in the Permian Basin and surrounding 

region. Sources: ArcMap, Railroad Commission of Texas, NM Oil and Gas Conservation 

Division. 
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Figure 12: Distribution of both oil and gas, and injection and disposal wells in Denver City 

TX, with representative 2 km buffer around geolocated houses. Sources: ArcMap, Railroad 

Commission of Texas, NM Oil and Gas Conservation Division, Zillow. 
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Figure 13: Distribution of earthquakes greater than magnitude 1 and 3 on the Richter scale 

from 1/1/2010-4/4/2023. Sources: U.S. Geological Survey and ArcMap. 
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Figure 14:  PM2.5 concentrations by year from 2010-2020 in the Permian Basin. Notes: 2017 

is used in the analysis (PM2.5) because it is the same year as the National Emissions Inventory 

used to calculate ΔPM2.5. Data is calculated at a 5×5 km grid with the Permian Basin outlined in 

yellow. Sources: van Donkelaar et al. (2021) and Goodkind et al. (2023). 
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Figure 15: Change in PM2.5 concentrations for 2017 due to oil and gas emissions originating 

in the Permian Basin (𝚫PM2.5). Notes: Values include primary PM2.5 and precursor emissions 

of PM2.5. Values are attributed to census block groups and matched with geocoded addresses. 

Sources: Goodkind et al. (2023). 
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10. Tables 

 

Table 1: Employment Metrics 

Panel A: Average Location Quotients for NAICS 21 

 2009 2022 Change 

Permian 19.77 26.48 +6.71 

Non-Permian 5.80 8.15 +2.35 

Panel B: All Industry Annual Wage 

 2009 2022 Change 

Permian $47,204.66 $58,002.89 $10,798.23 

Non-Permian $43,992.93 $51,129.65 $7,136.72 

Panel C: NAICS 21 Annual Wage  

 2009 2022 Change 

Permian $59,832.04 $73,345.69 $13,513.64 

Non-Permian $58,533.44 $67,729.21 $9,195.77 

Notes: 2009 values have been adjusted to $2022. Notes: Panel A and C are missing 25 counties 

in 2009 and 22 in 2022; Panel B is missing 2 counties for both years. Zero values were left as 

zeroes. Sources: U.S. BLS, 2009; U.S. BLS, 2022; author’s calculations. 
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Table 2: Select Price or Value Information Used in Hedonic Pricing Housing Studies 

Price or Value 

Variable 

Notation Variable Description and Discussion 

SALEPRICE 𝑃ℎ A publicly available, observed sales price (P) for an individual residence or 

housing (h) unit. In disclosure states, this information is public (e.g., available in a 

county office), and would typically come with a parcel identifier, and address. In 

non-disclosure states, this information is publicly available. When available it 

often comes with detailed information on housing characteristics (lot size, sq feet 

of house, number of bedrooms etc.). Matching an address with geo-coordinates 

allow it to be matched to a wide variety of geospatial information, at the smallest 

available scale.  

LISTPRICE 𝑃ℎ
𝐿𝐼𝑆𝑇 A posted or listed (LIST) sales price (P) for an individual residential housing unit 

(h), as provided by a variety of real estate advertising forums. When available it 

often comes with information on the detailed housing characteristics (lot size, sq 

feet of house, number of bedrooms and bathrooms etc.). This variable is like  

𝑃ℎ in matching to geospatial information.  

ZESTIMATE 𝑃ℎ
𝑍 An estimated market price (P) for an individual residence or housing (h) unit, as 

provided by a private real estate corporation, such as the Zillow “Zestimate” (Z). It 

will typically come with information on individual house characteristics, which 

might have to be scraped, cleaned, and standardized. The available address allows 

this information to be geo-located and matched with a wide variety of geospatial 

information. These price estimates are based on propriety algorithms or formulas, 

typically expected to include available information on prior or neighboring sales, 

assessments, mortgages, listing information etc.  

ASSESSED-

VALUE 
𝑉ℎ

𝐴 The publicly available assessed (A) value (V) for an individual residence or 

housing (h) unit. As used in ad valorem property value tax assessments, this 

information will commonly be available at county assessor websites or offices. 

Note that the assessed value is not necessarily the same as the taxable assessed 

value assigned (e.g., which might only be, say, 1/3 of assessed value in some 

states, like NM). There may be a variety of reasons why this measure is not closely 

correlated with market prices (e.g., lag in assessments, tax increase rate restrictions 

under state law, etc.). If an address exists, then it would be like 𝑃ℎ in matching to 

geospatial information. 

SAMPLED-

VALUE 
𝑉ℎ

𝑆 A survey sample (S) of residents of their perceived market value (V) for their 

individual residence or housing (h) unit, as based on the individual responses. This 

may or may not be a US Census Bureau based product but would typically not be 

attached to geo-coordinates. For the example of the American Housing Survey 

(AHS), these responses do include detailed information on individual housing unit 

and property characteristics, and then some broad geographic location (e.g., the 

metropolitan statistical area, MSA). Geospatial matching can only happen at the 

level of the smallest available geographic location information (e.g., county or 

MSA). This data be available over time in standardized waves (e.g., AHS) 

MED-

SAMPLE-

VALUE 

𝑚𝑒𝑑𝑉𝑔
𝑆 The statistical mean or median (med) for a survey sample (S) of residents of their 

perceived market value (V) for their individual residential housing unit, based on a 

particular geographic unit (g). This estimate could be a US Census Bureau 

product, such as the American Community Survey (ACS), or some other 

standardized national or sub-national survey. The available information on 

geographic unit may vary (e.g, median values of houses at the County, census tract 

and census block group levels). It may be available over time in standardized 

waves (e.g, ACS). 
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Table 3: Description of the Structural Variables and Housing Characteristics 

Variable  Notation Description 

BEDROOMS 𝑆ℎ
𝐵𝐸𝐷 Number of bedrooms in housing unit as taken from 

Zillow listing 

BATHROOMS 𝑆ℎ
𝐵𝐴𝑇𝐻 Number of bathrooms in housing unit as taken from 

Zillow listing 

SQFT 𝑆ℎ
𝑆𝑄𝐹𝑇

 Listed square feet of housing unit as taken from Zillow 

listing 

MANU 𝑆ℎ
𝑀𝐴𝑁𝑈 Whether or not the housing unit is a manufactured home, 

as taken from Zillow listing: 1 = yes, 0 = otherwise 

AGE 𝑆ℎ
𝐴𝐺𝐸 Age of housing unit in years as taken from Zillow listing. 

Variable determined as 2023 minus the date built (house 

in 2023 is 0). Houses categorized with a range are given 

oldest age in the range (i.e. 40-60 years is set to 60) 

ACCENTRAL 𝑆ℎ
𝐴𝐶 Whether or not housing unit includes air conditioning 

description, as taken from Zillow, using word “central”; 

1 = yes, 0 otherwise 

MULTI-GARAGE 𝑆ℎ
𝑀𝑈𝐿𝑇𝐼−𝐺𝐴𝑅 Whether or not housing unit, as taken from Zillow, is 

described as having a two-car garage or larger: 1= yes, 

0=otherwise 

LOTACRES 𝑆ℎ
𝐿𝑂𝑇 Lot size of the housing unit in acres, as taken from 

Zillow, Descriptions given in square feet have been 

converted to acres based on 43,560 square feet =1 acre 
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Table 4: Description of Location Variables 

Variable  Notation Description 

URBAN 𝐿ℎ
𝑈𝑅𝐵𝐴𝑁 Whether or not the address for a housing unit is located in an area 

defined by the 2020 US Census Bureau definition of Urban or Rural: 1 

= yes, 0 = otherwise. Census defines an urban city as one with >5,000 

people or 2,000 household units (US Census Bureau, 2023).   

PERMIAN 𝐿𝑐
𝑃𝐸𝑅𝑀𝐼𝐴𝑁 Whether or not the address for housing unit is located in county within 

Permian Basin. 1= in Permian, 0= in control group. Permian Basin 

counties defined usin Federal Reserve Bank of Dallas’ map (Energy in 

the Eleventh District, n.d.). There are 55 Permian counties, and 18 

control group counties, from eastern NM and western TX. For full list 

of counties, and the control group selection process, see Appendix A. 

STATE 𝐿𝑆𝑇𝐴𝑇𝐸 Whether the housing unit is in TX or NM: 1=NM, 0=TX 

DIST 𝐿ℎ
𝐷𝐼𝑆𝑇 Distance of housing unit to nearest principial road or interstate in km. 

Roads in U.S. have three major categories: local, collectors, and 

arterials (Federal Highway Administration, 2016). Within arterials 

there are interstates, other principal arterials, and other 

freeway/expressways. Distance from house calculated to either an 

interstate or a road considered “other principal arterial”.  

MED-HINC 𝐿𝑏
𝑀𝐸𝐷−𝐻𝐼𝑁𝐶 Median annual household income (in thousands) for the block group 

where housing unit is located, as determined from 2019 American 

Community Survey (ACS); data and corresponding shapefiles 

accessed using IPUMS (Mason et al., 2022). 

PCT-WHITE 𝐿𝑏
𝑃𝐶𝑇−𝑊𝐻𝐼𝑇𝐸 The percentage of the population of the block group who are white, as 

determined from 2019 ACS; data and corresponding shapefiles 

accessed using IPUMS (Mason et al., 2022). 

PC-INC 𝐿𝑏
𝑃𝐶−𝐼𝑁𝐶 Per capita annual income for the block group where a housing unit is 

located, as determined from 2019 ACS; data and corresponding 

shapefiles accessed using IPUMS (Mason et al., 2022). 

POP-DENS 𝐿𝑏
𝑃𝑂𝑃−𝐷𝐸𝑁𝑆 Population density for block group where housing unit is located 

scaled by 100. Density calculated using 2019 ACS population value 

divided by land area of block group in square kilometers; data and 

corresponding shapefiles accessed using IPUMS (Mason et al., 2022). 

AVG-UE 𝐿𝑐
𝐴𝑉𝐺−𝑈𝐸 Average unemployment rate, March 2022-February 2023, in the 

county of a housing unit. NM data collected from Local Area 

Unemployment Statistics (LAUS) website (New Mexico Workforce 

Connection, 2023). TX data collected from LAUS section of Texas 

Labor Market Information website (Texas Laborforce Commission, 

2023). 

PUBWATER 𝐿ℎ
𝑃𝑊 Whether or not a housing unit is located within area with a public 

water supply system: 1= yes, 0 otherwise. Houses are joined to state 

public water shapefiles, as provided by: Office of the NM State 

Engineer (Office of the State Engineer, 2022) and Water Service 

Boundary Viewer from Texas Water Development Board (Texas 

Water Development Board, 2023).   
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Table 5: Description of Environmental Quality Variables 

 
Variable Notation Description 

EQS-MAG3 𝑄ℎ
𝐸𝑄3

 Number of earthquakes measured above magnitude 3.0 on Richter 

scale, from 1/1/2010-4/4/2023, and within 10 km of housing unit 

(U.S. Geological Survey, 2023). 

SEIS-ACT-MAG3 𝑄ℎ
𝑆𝐴3 Indicator variable of whether at least one earthquake measured over 

magnitude 3.0 on Richter scale occurred within 10 km of housing 

unit: 1= yes, 0 otherwise  

EQS-MAG1 𝑄ℎ
𝐸𝑄1

 Number of earthquakes measured above magnitude 1.0 on Richter 

scale, from 1/1/2010-4/4/2023, and within 10 km of housing unit 

(U.S. Geological Survey, 2023). 

SEIS-ACT-MAG1 𝑄ℎ
𝑆𝐴1 Indicator variable of whether at least one earthquake measured over 

magnitude 3.0 on Richter scale occurred within 10 km of housing 

unit: 1= yes, 0 otherwise 

𝚫PM2.5 𝑄𝑏
Δ𝑃𝑀 Block group level PM2.5 concentration change attributable to oil and 

gas production in Permian Basin based on 2017 National Emissions 

Inventory (NEI). PM2.5 is particulate matter in air with diameter less 

than 2.5 micrometers, measured as micrograms per cubic meter of 

air (𝜇𝑔/𝑚3) (New York Department of Health, 2018; US EPA, 

2016). Goodkind et al. (2023) provided values from their attribution 

analysis of emissions in Permian Basin. PM2.5 Precursor emissions 

are emissions that through chemical reactions become PM2.5 

(Indiana Department of Environmental Management, 2021). 

Goodkind et al. (2023) use four precursor emissions (primary 

PM2.5, NOx, VOCs, and SO2) from 2017 NEI combined with 

InMAP Source-Receptor Matrix air quality model to measure 

downwind changes in PM2.5 concentrations due to emissions 

originating in Permian Basin. Resulting changes are measured at 

block group level and paired with each housing unit.  

PM2.5 𝑄𝑏
𝑃𝑀 Average PM2.5 value for block group the housing unit is in.  PM2.5 is 

particulate matter in air with a diameter less than 2.5 micrometers, 

measured as micrograms per cubic meter of air (𝜇𝑔/𝑚3) (New 

York Department of Health, 2018; US EPA, 2016). Value was 

calculated using satellite data from van Donkelaar et al. (2022) 

processed by Goodkind et al. (2023) then paired with the block 

group of a housing unit. Value is overall PM2.5 value of block group 

for a housing unit.  
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Table 6: Description of Well Variables 
 

Variable  Notation Description 

INJ&DISP-10KM 𝑊ℎ
𝐼𝑁𝐽10

 Number of injection and disposal wells within 10 km of house 

INJ&DISP-5KM 𝑊ℎ
𝐼𝑁𝐽5

 Number of injection and disposal wells within 5 km of house 

INJ&DISP-2KM 𝑊ℎ
𝐼𝑁𝐽2

 Number of injection and disposal wells within 2 km of house 

INJ&DISP-1KM 𝑊ℎ
𝐼𝑁𝐽1

 Number of injection and disposal wells within 1 km of house 

INJ&DISP-0.5KM 𝑊ℎ
𝐼𝑁𝐽0.5

 Number of injection and disposal wells within 0.5 km of house 

O&G-10KM 𝑊ℎ
𝑂𝐺10 Number of oil and gas wells within 10 km of house 

O&G-5KM 𝑊ℎ
𝑂𝐺5 Number of oil and gas wells within 5 km of house 

O&G-2KM 𝑊ℎ
𝑂𝐺2 Number of oil and gas wells within 2 km of house 

O&G-1KM 𝑊ℎ
𝑂𝐺1 Number of oil and gas wells within 1 km of house 

O&G-0.5KM 𝑊ℎ
𝑂𝐺0.5 Number of oil and gas wells within 0.5 km of house 

ALLWELLS-10KM 𝑊ℎ
𝑊𝐸𝐿𝐿10 Number of all four types of wells within 10 km of house 

ALLWELLS-5KM 𝑊ℎ
𝑊𝐸𝐿𝐿5 Number of all four types of wells within 5 km of house 

ALLWELLS-2KM 𝑊ℎ
𝑊𝐸𝐿𝐿2 Number of all four types of wells within 2 km of house 

ALLWELLS-1KM 𝑊ℎ
𝑊𝐸𝐿𝐿1 Number of all four types of wells within 1 km of house 

ALLWELLS-0.5KM 𝑊ℎ
𝑊𝐸𝐿𝐿0.5 Number of all four types of wells within 0.5 km of house 

 

Notes: Wells in NM determined using NM Oil and Gas Division’s Geospatial Hub map of all well 

locations (Livengood, 2023). NM has seven types: oil, gas, injection, saltwater disposal, CO2, 

miscellaneous, and water. INJ&DISP layer combines injection and saltwater disposal wells. O&G layers 

combine oil and gas wells. ALLWELLS layer combines INJ&DISP layer with O&G layer. TX data is 

obtained from Railroad Commission of Texas. SYMNUM is the type of well from the code description 

provided in the Digital Map Information User Guide (Railroad Commission of Texas, 2021). We combine 

wells from all counties of interest and then keep the wells with a SYMNUM of 21- 23, 104-107, 124-127, 

and 144-147 to capture the INJ&DISP wells. O&G wells fall under SYMNUM 4 and 5. ALLWELL layer 

contains both INJ&DISP layer and O&G layer. The wells included in this study are considered active in 

the NM database and we exclude SYMNUM’s of plugged or shut-in wells in TX. Layers for both states 

combined for three resulting production layers: INJ&DISP, O&G, and ALLWELLS. Buffers created 

around each housing unit using radii of 0.5 km, 1 km, 2 km, 5 km, and 10 km. Number of wells from any 

respective layer (INJ&DISP, O&G, and ALLWELLS) within each ring around a housing unit are counted 

to create the variable. 
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Table 7: Select Past Research Using HPM with Oil and Gas Development 

Paper Price or Value 

Measure 

Location Key Topics Findings 

Balthrop & Hawley 

(2017) 
𝑃ℎ Fort Worth, TX 

(Tarrant CO) 

Well proximity Within 3,500 feet of a well 

lowered home values 1.5-

3.5% on average 

He et al. (2017) 𝑃ℎ Weld County, CO Well permit 

proximity, 

water type, 

distance to road 

Inconclusive 

Lee & Whitacre 

(2021) 
𝑃ℎ Oklahoma Well proximity, 

water type, 

distance to road 

Inconclusive 

Gopalakrishnan & 

Klaiber (2013) 
𝑃ℎ Washington 

County, PA 

Well proximity, 

water type, 

distance to road 

Homes on well water within 

0.75mi of an active well 

worth 21.7% less, effect is 

less as distance increases 

Muehlenbachs et al. 

(2015) 
𝑃ℎ Pennsylvania Well proximity, 

water type 

Within 1-1.5 km of well 

piped water benefits $6,339 

annually. Non-piped losing 

$39,820 annually 

Ferreira et al. 

(2018) 
𝑃ℎ Oklahoma Earthquakes Injection well within 2 km 

and additional earthquake 

over 3.0M decreases value 

by $571.  

Gibbons (2021) 𝑃ℎ United Kingdom Earthquakes Willingness to pay to avoid 

earthquakes between $577  

and $696 annually 

Metz et al. (2017) 𝑃ℎ Oklahoma Earthquakes 3.15%-4.71% decrease in 

home values (~$8,458) after 

earthquakes started 

Boxall et al. (2005) 𝑃ℎ Central Alberta, 

Canada 

Air quality Increased H2S emissions lead 

to 4.3% decrease in price, on 

average  

Bennett & Loomis 

(2015) 
𝑃ℎ Weld County, CO Well proximity, 

well density 

In 7 of 12 models, an 

additional well within 0.5 

miles decreases home values 

1% in non-rural areas 

Weber et al. (2016) 𝑚𝑒𝑑𝑉𝑍𝐼𝑃
𝑆  Dallas/Ft. Worth, 

Texas 

Well density Using ZHVI, a $1.27 per 

student increase in O&G 

property tax base led to 

$0.19 increase in home value 

Note: all values are converted into $2022. 
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Table 8: Description of Alternative Dependent Variables 

Variable Notation Description 

lnLISTPRICE 𝑙𝑛 𝑃ℎ
𝐿𝐼𝑆𝑇   Natural log of the listing price of a housing unit and connected 

property, as taken from Zillow listing 

lnZESTIMATE 𝑙𝑛 𝑃ℎ
𝑍 Natural log of the Zestimate, the Zillow estimated value of a 

housing unit and connected property, as taken from Zillow 

listing. Zestimate based on a proprietary model that accounts for 

public data, multiple listing service (MLS) data, user-submitted 

data, location information, and market trends (Zillow, 2023).  
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Table 9: Price Variables Summary Statistics 

 

 Permian Control Total 

  Mean  Mean  Mean 

  [Median]  [Median]  [Median] 

Variable N (Std. Dev.) N (Std. Dev.) N (Std. Dev.) 

𝑃ℎ
𝐿𝐼𝑆𝑇 

 4,353 326,115 2,455 600,425 6,808 425,032 

  [244,900]  [359,900]  [275,000] 

  (392,095)  (937,383)  (657,586) 

𝑃ℎ
𝑍 

1,638 287,687 1,318 525,816 2,956 393,862 

  [232,197]  [363,050]  [277,029] 

  (244,577)  (573,038)  (439,890) 
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Table 10: Structural Variables Summary Statistics 

 

 Permian Control Total 

  Mean  Mean  Mean 

  [Median]  [Median]  [Median] 

Variable N (Std. Dev.) N (Std. Dev.) N (Std. Dev.) 

𝑆ℎ
𝐵𝐸𝐷 

4,353 3.2977 2,455 3.2420 6,808 3.2776 

  [3]  [3]  [3] 

  (0.8112)  (0.8744)  (0.8349) 

𝑆ℎ
𝐵𝐴𝑇𝐻 

4,353 2.2885 2,455 2.4301 6,808 2.3396 

  [1]  [2]  [2] 

  (0.9674)  (1.0004)  (0.9817) 

𝑆ℎ
𝑆𝑄𝐹𝑇

 
4,353 2,109.66 2,455 2,145.12 6,808 2,122.45 

  [1,893]  [1,914]  [1,900] 

  (1,111.11)  (1,056.98)  (1,091.96) 

𝑆ℎ
𝐴𝐺𝐸 

4,034 41.4955 2,367 35.161 6,401 39.1531 

  [43]  [28]  [39] 

  (26.9682)  (28.6482)  (27.7681) 

𝑆ℎ
𝐿𝑂𝑇 

4,046 8.6793 2,292 13.1488 6,338 10.2956 

  [0.2222]  [0.32]  [0.2410] 

  (216.989)  (230.64)  (222.015) 

𝑆ℎ
𝑀𝐴𝑁𝑈 

4,353 0.0542 2,455 0.0562 6,808 0.0549 

  [0]  [0]  [0] 

  (0.2265)  (0.2304)  (0.2279) 

𝑆ℎ
𝐴𝐶 

4,343 0.7840 2,423 0.7924 6,766 0.7870 

  [1]  [1]  [1] 

  (0.4115)  (0.4057)  (0.4094) 

𝑆ℎ
𝑀𝑈𝐿𝑇𝐼−𝐺𝐴𝑅 

4,341 0.4879 2,433 0.5113 6,774 0.4963 

  [0]  [1]  [0] 

  (0.4999)  (0.5000)  (0.5000) 
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Table 11: Location Variables Summary Statistics 

 

 Permian Control Total 

  Mean  Mean  Mean 

  [Median]  [Median]  [Median] 

Variable N (Std. Dev) N (Std. Dev) N (Std. Dev) 

𝐿ℎ
𝑈𝑅𝐵𝐴𝑁 

4,353 0.8707 2,455 0.6705 6,808 0.7985 

  [1]  [1]  [1] 

  (0.3356)  (0.4701)  (0.4012) 

𝐿𝑐
𝑃𝐸𝑅𝑀𝐼𝐴𝑁 

4,353 1 2,455 0 6,808 0.6394 

  [1]  [0]  [1] 

  (0)  (0)  (0.48020 

𝐿𝑆𝑇𝐴𝑇𝐸 
4,353 0.1907 2,455 0.3198 6,808 0.2372 

  [0]  [0]  [0] 

  (0.3929)  (0.4665)  (0.4254) 

𝐿ℎ
𝐷𝐼𝑆𝑇 

4,353 2.6335 2,455 4.7970 6,808 3.4137 

  [0.7597]  [1.2600]  [0.8942] 

  (6.7886)  (9.4439)  (7.9181) 

𝐿𝑏
𝑀𝐸𝐷−𝐻𝐼𝑁𝐶 

4,201 71.0922 2,418 63.2143 6,619 68.2143 

  [65.655]  [57.75]  [62.333] 

  (33.1169)  (23.504)  (30.2022) 

𝐿𝑏
𝑃𝐶−𝐼𝑁𝐶  

4,353 32,192.7 2,455 33,945.3 6,808 32,824.7 

  [28,991]  [29,761]  [29,379] 

  (16,267.3)  (17,741)  (16,219.9) 

𝐿𝑏
𝑃𝑂𝑃−𝐷𝐸𝑁𝑆 

4,353 8.2622 2,455 4.5531 6,808 6.9247 

  [5.1621]  [1.3455]  [3.4271] 

  (8.7650)  (6.3160)  (8.1652) 

𝐿𝑐
𝐴𝑉𝐺−𝑈𝐸 

4,353 4.6119 2,455 5.2182 6,808 4.8306 

  [4.5171]  [5.0848]  [4.5171] 

  (1.4310)  (1.8781)  (1.6327) 

𝐿ℎ
𝑃𝑊 

4,353 0.8390 2,455 0.8692 6,808 0.8499 

  [1]  [1]  [1] 

  (0.3676)  (0.3372)  (0.3572) 
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Table 12: Well Variable Summary Statistics 

 

 Permian Control Total 

  Mean  Mean  Mean 

  [Median]  [Median]  [Median] 

Variable N (Std. Dev.) N (Std. Dev.) N (Std. Dev.) 

𝑊ℎ
𝐼𝑁𝐽2

 
4,353 1.7138 2,455 0.0489 6,808 1.1134 

  [0]  [0]  [0] 

  (7.5841)  (0.2555)  (6.1185) 

𝑊ℎ
𝐼𝑁𝐽1

 
4,353 0.3701 2,455 0.0118 6,808 0.2409 

  [0]  [0]  [0] 

  (2.0469)  (0.1222)  (1.6474) 

𝑊ℎ
𝑂𝐺2 

4,353 12.9412 2,455 0.8778 6,808 8.5911 

  [0]  [0]  [0] 

  (26.0561)  (3.6525)  (21.7354) 

𝑊ℎ
𝑂𝐺1 

4,353 2.5449 2,455 0.1735 6,808 1.6898 

  [0]  [0]  [0] 

  (6.7528)  (1.1276)  (5.5596) 

𝑊ℎ
𝑊𝐸𝐿𝐿2 

4,353 14.655 2,455 0.9267 6,808 9.7045 

  [0]  [0]  [0] 

  (30.5479)  (3.7652)  (25.4006) 

𝑊ℎ
𝑊𝐸𝐿𝐿1 

4,353 2.915 2,455 0.1853 6,808 1.9307 

  [0]  [0]  [0] 

  (7.9406)  (1.1640)  (6.5207) 
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Table 13: Environmental Quality Summary Statistics 

 

 Permian Control Total 

  Mean  Mean  Mean 

  [Median]  [Median]  [Median] 

Variable N (Std. Dev.) N (Std. Dev.) N (Std. Dev.) 

𝑄ℎ
𝐸𝑄3

 
4,353 1.4154 2,455 0.0016 6,808 0.9056 

  [0]  [0]  [0] 

  (3.6731)  (0.0807)  (3.0148) 

𝑄ℎ
𝑆𝐴3 

4,353 0.1895 2,455 0.0004 6,808 0.1213 

  [0]  [0]  [0] 

  (0.3920)  (0.0202)  (0.3265) 

𝑄ℎ
𝐸𝑄1

 
4,353 13.2826 2,455 0.0293 6,808 8.5034 

  [0]  [0]  [0] 

  (31.5354)  (0.2058)  (26.0064) 

𝑄ℎ
𝑆𝐴1 

4,353 0.1264 2,455 0 6,808 0.0809 

  [0]  [0]  [0] 

  (0.3323)  (0)  (2.7874) 

𝑄𝑏
𝛥𝑃𝑀 

4,353 2.2135 2,455 0.2429 6,808 1.5029 

  [1.3098]  [0.1043]  [0.8806] 

  (3.2748)  (0.2213)  (2.7874) 

𝑄𝑏
𝑃𝑀  

4,353 6.0082 2,455 5.8231 6,808 5.9414 

  [5.9]  [5.9]  [5.9] 

  (1.0426)  (0.5970)  (0.9118) 
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Table 14: Base Models, and Well Density (N=5,767) 

Dependent Variable: lnLISTPRICE 

Variables Model 1 Model 2 Model 3 Model 4 

SQFT 0.0003*** 0.0003*** 0.0003*** 0.0003*** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

MANU -0.3410*** -0.3169*** -0.3461*** -0.3434*** 

 (0.0581) (0.0600) (0.0581) (0.0581) 

AGE -0.0062*** -0.0059*** -0.0062*** -0.0062*** 

 (0.0005) (0.0005) (0.0005) (0.0005) 

LOTACRES 0.0002 0.0002 0.0002 0.0002 

 (0.0001) (0.0001) (0.0001) (0.0001) 

BEDROOMS 0.0437** 0.0491*** 0.0460*** 0.0452*** 

 (0.0175) (0.0169) (0.0172) (0.0173) 

MULTI-GARAGE 0.0875*** 0.0774*** 0.0825*** 0.0859*** 

 (0.0222) (0.0214) (0.0217) (0.0219) 

ACCENTRAL 0.1469*** 0.1205*** 0.1460*** 0.1467*** 

 (0.0251) (0.0258) (0.0247) (0.0249) 

AVG-UE -0.0873*** -0.0976*** -0.1013*** -0.0945*** 

 (0.0282) (0.0265) (0.0275) (0.0279) 

DIST 0.0062** 0.0061*** 0.0060** 0.0060** 

 (0.0024) (0.0023) (0.0024) (0.0024) 

MED-HINC 0.0008 0.0015*** 0.0011** 0.0009* 

 (0.0005) (0.0005) (0.0005) (0.0005) 

POP-DENS -0.0078*** -0.0057*** -0.0087*** -0.0084*** 

 (0.0013) (0.0012) (0.0013) (0.0013) 

PCT-WHITE 0.0062*** 0.0069*** 0.0059*** 0.0061*** 

 (0.0010) (0.0010) (0.0010) (0.0010) 

PUBWATER 0.0478*** 0.0496*** 0.0461** 0.0462** 

 (0.0183) (0.0178) (0.0181) (0.0182) 

PERMIAN  -0.2727***   

  (0.0299)   

ALLWELLS-2KM   -0.0024***  

   (0.0004)  

ALLWELLS-1KM    -0.0053*** 

    (0.0013) 

Constant 11.581*** 11.63*** 11.6487*** 11.6138*** 

 (0.1428) (0.1377) (0.1382) (0.1403) 

R2 0.6426 0.6621 0.6470 0.6442 

VIF>10 No No No No 
Notes: All models include month fixed effects, and robust standard errors clustered by block group. Significance 

denoted by: *** p<0.01, ** p<0.05, *p<0.1 
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Table 15: Extended Models (N=5,767) 

Dependent Variable: lnLISTPRICE 

 Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

SQFT 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

MANU -0.3330*** -0.3233*** -0.3461*** -0.3246*** -0.3425*** -0.3176*** 

 (0.0572) (0.0582) (0.0581) (0.0598) (0.0578) (0.0600) 

AGE -0.0061*** -0.0052*** -0.0062*** -0.0059*** -0.0063*** -0.0059*** 

 (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) 

LOTACRES 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

BEDROOMS 0.0453*** 0.0568*** 0.0460*** 0.0509*** 0.0439** 0.0492*** 

 (0.0174) (0.0165) (0.0172) (0.0168) (0.0174) (0.0169) 

MULTI-GARAGE 0.0915*** 0.1062*** 0.0825*** 0.0750*** 0.0894*** 0.0783*** 

 (0.0217) (0.0206) (0.0217) (0.0211) (0.0219) (0.0213) 

ACCENTRAL 0.1447*** 0.1050*** 0.1460*** 0.1199*** 0.1466*** 0.1205*** 

 (0.0252) (0.0256) (0.0247) (0.0256) (0.0250) (0.0258) 

AVG-UE -0.1061*** -0.1669*** -0.1013*** -0.1067*** -0.0932*** -0.0993*** 

 (0.0299) (0.0291) (0.0275) (0.0266) (0.0276) (0.0265) 

DIST 0.0060** 0.0059** 0.0060** 0.0059** 0.0061** 0.0061** 

 (0.0024) (0.0024) (0.0024) (0.0023) (0.0024) (0.0024) 

MED-HINC 0.0017*** 0.0020*** 0.0011** 0.0016*** 0.0010* 0.0015*** 

 (0.0005) (0.0004) (0.0005) (0.0004) (0.0006) (0.0005) 

POP-DENS -0.0060*** -0.0051*** -0.0087*** -0.0064*** -0.0075*** -0.0056*** 

 (0.0013) (0.0012) (0.0013) (0.0013) (0.0013) (0.0012) 

PCT-WHITE 0.0059*** 0.0053*** 0.0059*** 0.0068*** 0.0060*** 0.0068*** 

 (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) (0.0010) 

PUBWATER 0.0532*** 0.0475*** 0.0461** 0.0482*** 0.0483*** 0.0497*** 

 (0.0182) (0.0173) (0.0181) (0.0177) (0.0183) (0.0178) 

PERMIAN  -1.7834***  -0.2671***  -0.2702*** 

  (0.3970)  (0.0301)  (0.0300) 

PM2.5 -0.0077 -0.1998***     

 (0.0119) (0.0570)     

ΔPM2.5 -0.0205*** -1.3593***     

 (0.0038) (0.1917)     

PERMIAN*PM2.5  0.1976***     

 (0.0585)     

PERMIAN*ΔPM2.5  1.3529***     

  (0.1920)     

ALLWELLS-2KM   -0.0024*** -0.0082**   

   (0.0004) (0.0040)   

PERMIAN* 

ALLWELLS-2KM 

   0.0070*   

   (0.0040)   

EQ-MAG1     -0.0010* 0.0335 

     (0.0005) (0.0885) 

PERMIAN* 

EQ-MAG1 

     -0.0337 

     (0.0885) 

Constant 11.6515*** 13.4346*** 11.6487*** 11.6684*** 11.6001*** 11.6351*** 

 (0.1435) (0.4177) (0.1382) (0.1366) (0.1400) (0.1378) 

R2 0.6466 0.6831 0.6470 0.6637 0.6433 0.6621 

VIF>10 No Yes No Yes No Yes 

Notes: All models include month fixed effects, and robust standard errors clustered by block group. Significance 

denoted by: *** p<0.01, ** p<0.05, *p<0.1 
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Table 16: Permian Counties Sample Only (N=3,602) 

Dependent Variable: lnLISTPRICE 

Variables Model 1 Model 2 Model 3 Model 4 

HOUSESQFT 0.0003*** 0.0003*** 0.0003*** 0.0003*** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

MANU -0.2243*** -0.2230*** -0.2268*** -0.2221*** 

 (0.0759) (0.0762) (0.0760) (0.0760) 

AGE -0.0055*** -0.0057*** -0.0056*** -0.0055*** 

 (0.0005) (0.0005) (0.0005) (0.0005) 

LOTACRES 0.0002 0.0002 0.0002 0.0002 

 (0.0002) (0.0002) (0.0002) (0.0002) 

BEDROOMS 0.0608*** 0.0616*** 0.0612*** 0.0609*** 

 (0.0178) (0.0177) (0.0178) (0.0178) 

MULTI-GARAGE 0.1726*** 0.1704*** 0.1712*** 0.1716*** 

 (0.0241) (0.0239) (0.0241) (0.0240) 

ACCENTRAL 0.1700*** 0.1751*** 0.1700*** 0.1701*** 

 (0.0262) (0.0265) (0.0261) (0.0263) 

AVG-UE -0.0605*** -0.0526** -0.0633*** -0.0585** 

 (0.0226) (0.0242) (0.0228) (0.0230) 

DIST 0.0039 0.0037 0.0039 0.0040 

 (0.0041) (0.0041) (0.0040) (0.0041) 

MED-HINC 0.0018*** 0.0018*** 0.0019*** 0.0018*** 

 (0.0004) (0.0004) (0.0004) (0.0004) 

POP-DENS -0.0028** -0.0028** -0.0031** -0.0029** 

 (0.0012) (0.0012) (0.0012) (0.0012) 

PCT-WHITE 0.0036*** 0.0033*** 0.0035*** 0.0036*** 

 (0.0009) (0.0009) (0.0009) (0.0010) 

PUBWATER 0.0355* 0.0355* 0.0350* 0.0352* 

 (0.0198) (0.0199) (0.0199) (0.0198) 

PM2.5  -0.0230**   

  (0.0115)   

ΔPM2.5  0.0013   

  (0.0024)   

ALLWELLS-2KM   -0.0004  

   (0.0004)  

EQ-MAG1    0.0003 

    (0.0004) 

Constant 11.4832*** 11.6139*** 11.5016*** 11.4738*** 

 (0.1160) (0.1202) (0.1160) (0.1176) 

R2 0.6797 0.6805 0.6800 0.6799 

VIF>10 No No No No 

Notes: All models include month fixed effects, and robust standard errors clustered by block 

group. Significance denoted by: *** p<0.01, ** p<0.05, *p<0.1 
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Table 17: Control Counties Sample Only (N=2,165) 

Dependent Variable: lnLISTPRICE 

Variables Model 1 Model 2 Model 3 Model 4 

HOUSESQFT 0.0003*** 0.0003*** 0.0003*** 0.0003*** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

MANU -0.4541*** -0.4474*** -0.4594*** -0.4543*** 

 (0.0852) (0.0855) (0.0850) (0.0851) 

AGE -0.0060*** -0.0047*** -0.0060*** -0.0060*** 

 (0.0008) (0.0008) (0.0008) (0.0008) 

LOTACRES 0.0002 0.0002 0.0002 0.0002 

 (0.0002) (0.0002) (0.0002) (0.0002) 

BEDROOMS 0.0547* 0.0567* 0.0556* 0.0549* 

 (0.0313) (0.0297) (0.0313) (0.0313) 

MULTI-GARAGE 0.0105 0.0778** 0.0074 0.0118 

 (0.0338) (0.0357) (0.0339) (0.0335) 

ACCENTRAL 0.0953** 0.0750* 0.0941** 0.0950** 

 (0.0454) (0.0424) (0.0453) (0.0453) 

AVG-UE -0.2100*** -0.4511*** -0.2131*** -0.2118*** 

 (0.0609) (0.0788) (0.0611) (0.0609) 

DIST 0.0065** 0.0110*** 0.0066*** 0.0067** 

 (0.0025) (0.0031) (0.0025) (0.0027) 

MED-HINC 0.0031*** 0.0026*** 0.0031*** 0.0030*** 

 (0.0010) (0.0008) (0.0009) (0.0010) 

POP-DENS -0.0092*** -0.0088*** -0.0097*** -0.0091*** 

 (0.0032) (0.0026) (0.0033) (0.0033) 

PCT-WHITE 0.0095*** 0.0062*** 0.0098*** 0.0095*** 

 (0.0021) (0.0017) (0.0021) (0.0021) 

PUBWATER 0.0635** 0.0706** 0.0653** 0.0634** 

 (0.0318) (0.0298) (0.0316) (0.0318) 

PM2.5  -0.0730   

  (0.0473)   

ΔPM2.5  -1.5395***   

  (0.1977)   

ALLWELLS-2KM   -0.0073*  

   (0.0038)  

EQ-MAG1    0.0496 

    (0.0970) 

Constant 11.6599*** 13.5675*** 11.6574*** 11.6653*** 

 (0.2412) (0.4268) (0.2407) (0.2417) 

R2 0.6346 0.6799 0.6356 0.6347 

VIF>10 No No No No 

Notes: All models include month fixed effects, and robust standard errors clustered by block 

group. Significance denoted by: *** p<0.01, ** p<0.05, *p<0.1 
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Table 18: Base Models and Well Density with lnZESTIMATE (N=2,601) 

Dependent Variable: lnZESTIMATE 

Variables Model 1 Model 2 Model 3 Model 4 

HOUSESQFT 0.0003*** 0.0003*** 0.0003*** 0.0003*** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

MANU -0.2652*** -0.2275*** -0.2676*** -0.2659*** 

 (0.0882) (0.0831) (0.0883) (0.0881) 

AGE -0.0059*** -0.0058*** -0.0059*** -0.0059*** 

 (0.0006) (0.0005) (0.0006) (0.0006) 

LOTACRES 4.78e-05 6.59e-05 6.26e-05 5.99e-05 

 (0.0000) (0.0000) (0.0000) (0.0000) 

BEDROOMS 0.0263 0.0318 0.0271 0.0268 

 (0.0270) (0.0264) (0.0267) (0.0269) 

MULTI-GARAGE 0.1159*** 0.0948*** 0.1090*** 0.1137*** 

 (0.0284) (0.0272) (0.0280) (0.0281) 

ACCENTRAL 0.1663*** 0.1473*** 0.1680*** 0.1689*** 

 (0.0358) (0.0352) (0.0351) (0.0354) 

AVG-UE -0.0983*** -0.1057*** -0.1177*** -0.1090*** 

 (0.0334) (0.0307) (0.0329) (0.0331) 

DIST 0.0048 0.0049 0.0049 0.0048 

 (0.0030) (0.0031) (0.0030) (0.0030) 

MED-HINC 0.0011** 0.0014*** 0.0012** 0.0011** 

 (0.0005) (0.0005) (0.0005) (0.0005) 

POP-DENS -0.0057*** -0.0030** -0.0065*** -0.0063*** 

 (0.0015) (0.0014) (0.0015) (0.0015) 

PCT-WHITE 0.0050*** 0.0055*** 0.0048*** 0.0049*** 

 (0.0011) (0.0010) (0.0011) (0.0011) 

PUBWATER 0.0322 0.0427* 0.0345 0.0328 

 (0.0228) (0.0221) (0.0226) (0.0227) 

PERMIAN  -0.2643***   

  (0.0298)   

ALLWELLS-2KM   -0.0028***  

   (0.0005)  

ALLWELLS-1KM    -0.0067*** 

    (0.0016) 

Constant 11.8360*** 11.7819*** 11.9158*** 11.8775*** 

 (0.2033) (0.1892) (0.2011) (0.2019) 

R2 0.7038 0.7239 0.7086 0.7060 

VIF>10 No No No No 

Notes: All models include month fixed effects, and robust standard errors clustered by block group. 

Significance denoted by: *** p<0.01, ** p<0.05, *p<0.1 
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Table 19: Extended Models with lnZESTIMATE (N=2,601) 

Dependent Variable: lnZESTIMATE 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

HOUSESQFT 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

MANU -0.2509*** -0.2235*** -0.2676*** -0.2325*** -0.2648*** -0.2299*** 

 (0.0874) (0.0783) (0.0883) (0.0832) (0.0881) (0.0832) 

AGE -0.0057*** -0.0051*** -0.0059*** -0.0059*** -0.0059*** -0.0058*** 

 (0.0006) (0.0005) (0.0006) (0.0005) (0.0006) (0.0005) 

LOTACRES 5.15e-05 5.42e-05 6.26e-05 7.28e-05 4.78e-05 6.57e-05 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

BEDROOMS 0.0284 0.0395 0.0271 0.0323 0.0263 0.0319 

 (0.0271) (0.0262) (0.0267) (0.0263) (0.0270) (0.0265) 

MULTI-GARAGE 0.1190*** 0.1208*** 0.1090*** 0.0917*** 0.1171*** 0.0957*** 

 (0.0276) (0.0263) (0.0280) (0.0271) (0.0282) (0.0271) 

ACCENTRAL 0.1612*** 0.1311*** 0.1680*** 0.1489*** 0.1663*** 0.1458*** 

 (0.0358) (0.0338) (0.0351) (0.0349) (0.0357) (0.0352) 

AVG-UE -0.1296*** -0.1822*** -0.1177*** -0.1177*** -0.1029*** -0.1061*** 

 (0.0372) (0.0352) (0.0329) (0.0308) (0.0333) (0.0310) 

DIST 0.0049 0.0055* 0.0049 0.0050 0.0048 0.0052* 

 (0.0030) (0.0033) (0.0030) (0.0031) (0.0030) (0.0031) 

MED-HINC 0.0018*** 0.0020*** 0.0012** 0.0015*** 0.0012** 0.0014*** 

 (0.0005) (0.0005) (0.0005) (0.0004) (0.0005) (0.0005) 

POP-DENS -0.0040*** -0.0027** -0.0065*** -0.0036** -0.0055*** -0.0030** 

 (0.0015) (0.0013) (0.0015) (0.0014) (0.0015) (0.0014) 

PCT-WHITE 0.0047*** 0.0050*** 0.0048*** 0.0054*** 0.0049*** 0.0055*** 

 (0.0011) (0.0009) (0.0011) (0.0010) (0.0011) (0.0010) 
PUBWATER 0.0398* 0.0398* 0.0345 0.0437** 0.0325 0.0434** 

 (0.0225) (0.0211) (0.0226) (0.0219) (0.0228) (0.0221) 

PM2.5 0.0010 -0.1357***     

 (0.0134) (0.0509)     

ΔPM2.5 -0.0270*** -1.2118***     

 (0.0047) (0.1870)     

PERMIAN  -1.5373***  -0.2532***  -0.2646*** 

  (0.3579)  (0.0294)  (0.0298) 

PERMIAN*PM2.5  0.1603***     

  (0.0524)     

PERMIAN*ΔPM2.5  1.2041***     

  (0.1871)     

ALLWELLS-2KM   -0.0028*** -0.0043   

   (0.0005) (0.0045)   

PERMIAN* 

ALLWELLS-2KM 

   0.0027   

   (0.0044)   

EQ-MAG1     -0.0007 0.1293 

     (0.0005) (0.0895) 

PERMIAN* 

EQ-MAG1 

     -0.1292 

     (0.0894) 

Constant 11.9068*** 12.9995*** 11.9158*** 11.8317*** 11.8532*** 11.7769*** 

 (0.1928) (0.3911) (0.2011) (0.1893) (0.2030) (0.1905) 

R2 0.7090 0.7413 0.7086 0.7256 0.7041 0.7242 

VIF>10 No Yes No Yes No Yes 

Notes: All models include month fixed effects, and robust standard errors clustered by block group. Significance 

denoted by: *** p<0.01, ** p<0.05, *p<0.1 
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Table 20: Base Models and Well Density with Conley Standard Errors (N=5,767) 

Dependent Variable: lnLISTPRICE 

 VARIABLES Model 1 Model 2 Model 3 Model 4 

SQFT 0.0003*** 0.0003*** 0.0003*** 0.0003*** 

 (0.0000) (0.0000) (0.0000) (0.0000) 

MANU -0.344*** -0.325*** -0.350*** -0.347*** 

 (0.0632) (0.0681) (0.0632) (0.0633) 

AGE -0.0062*** -0.0059*** -0.0062*** -0.0062*** 

 (0.0006) (0.0006) (0.0006) (0.0006) 

LOTACRES 0.0002 0.0002 0.0002 0.0002 

 (0.0001) (0.0001) (0.0001) (0.0001) 

BEDROOMS 0.0444** 0.0515*** 0.0470** 0.0461** 

 (0.0184) (0.0190) (0.0188) (0.0187) 

MULTI-GARAGE 0.0919*** 0.0886*** 0.0875*** 0.0906*** 

 (0.0264) (0.0244) (0.0256) (0.0261) 

ACCENTRAL 0.141*** 0.104** 0.140*** 0.141*** 

 (0.0389) (0.0429) (0.0385) (0.0387) 

AVG-UE -0.0815 -0.0826* -0.0947* -0.0884* 

 (0.0528) (0.0467) (0.0521) (0.0526) 

DIST 0.0060* 0.0056* 0.0058* 0.0058* 

 (0.0033) (0.0030) (0.0032) (0.0033) 

MED-HINC 0.0001 0.0014*** 0.0011** 0.0009 

 (0.0006) (0.0004) (0.0005) (0.0006) 

POP-DENS -0.0078*** -0.0055*** -0.0087*** -0.0084*** 

 (0.0022) (0.0017) (0.0023) (0.0023) 

PCT-WHITE 0.0061*** 0.0067*** 0.0058*** 0.0060*** 

 (0.0013) (0.0013) (0.0012) (0.0012) 

PUBWATER 0.0472** 0.0479*** 0.0453** 0.0455** 

 (0.0189) (0.0178) (0.0180) (0.0180) 

PERMIAN  -0.290***   

  (0.0626)   

ALLWELLS-2KM   -0.0024***  

   (0.0009)  

ALLWELLS-1KM    -0.0054** 

    (0.0024) 

R2 0.5655 0.5913 0.5710 0.5675 

Distance 50 km 50 km 50 km 50 km 

Panel Var State State State State 

Notes: All models include month fixed effects, and Conley standard errors. Significance denoted 

by: *** p<0.01, ** p<0.05, *p<0.1  
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Table 21: Extended Models with Conley Standard Errors (N=5,767) 

Dependent Variable: lnLISTPRICE 

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

SQFT 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 0.0003*** 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

MANU -0.337*** -0.331*** -0.350*** -0.333*** -0.347*** -0.326*** 

 (0.0622) (0.0670) (0.0632) (0.0677) (0.0633) (0.0682) 

AGE -0.0062*** -0.0053*** -0.0062*** -0.0059*** -0.0063*** -0.0059*** 

 (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) 

LOTACRES 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

BEDROOMS 0.0468** 0.0602*** 0.0470** 0.0534*** 0.0448** 0.0516*** 

 (0.0190) (0.0192) (0.0188) (0.0194) (0.0186) (0.0191) 

MULTI-GARAGE 0.0984*** 0.119*** 0.0875*** 0.0864*** 0.0946*** 0.0900*** 

 (0.0257) (0.0220) (0.0256) (0.0241) (0.0263) (0.0244) 

ACCENTRAL 0.137*** 0.0875** 0.140*** 0.103** 0.140*** 0.104** 

 (0.0388) (0.0418) (0.0385) (0.0426) (0.0389) (0.0428) 

AVG-UE -0.0946* -0.147*** -0.0947* -0.0917* -0.0870* -0.0849* 

 (0.0558) (0.0446) (0.0521) (0.0473) (0.0528) (0.0470) 

DIST 0.00563* 0.00520* 0.00577* 0.00546* 0.00585* 0.00563* 

 (0.0031) (0.0030) (0.0032) (0.0030) (0.0033) (0.0031) 

MED-HINC 0.0016*** 0.002*** 0.0011** 0.0016*** 0.001** 0.0015*** 

 (0.0004) (0.0003) (0.0005) (0.0004) (0.0005) (0.0004) 

POP-DENS -0.0058*** -0.0048*** -0.0087*** -0.0062*** -0.0075*** -0.0054*** 

 (0.0017) (0.0013) (0.0023) (0.0018) (0.0021) (0.0017) 

PCT-WHITE 0.0057*** 0.0049*** 0.0058*** 0.0066*** 0.0059*** 0.0066*** 

 (0.0012) (0.0010) (0.0012) (0.0012) (0.0012) (0.0013) 

PUBWATER 0.0524*** 0.0459*** 0.0453** 0.0465*** 0.0476** 0.0481*** 

 (0.0194) (0.0170) (0.0180) (0.0174) (0.0188) (0.0178) 

PERMIAN  -1.737***  -0.286***  -0.287*** 

  (0.4150)  (0.0617)  (0.0612) 

ALLWELLS-2KM   -0.00239*** -0.00896   

   (0.0009) (0.0057)   

PM2.5 -0.0159 -0.206***     

 (0.0235) (0.0564)     

ΔPM2.5 -0.0216* -1.364***     

 (0.0119) (0.2397)     

PERMIAN*PM  0.187***     

  (0.0585)     

PERMIAN* 

ΔPM2.5 

 1.357***     

 (0.2394)     

PERMIAN* 

ALLWELLS-2KM 

   0.00777   

   (0.0056)   

EQ-MAG1     -0.00104 0.0416 

     (0.0008) (0.0922) 

PERMIAN* 

EQ-MAG1 

     -0.0420 

     (0.0921) 

R2 0.5710 0.6178 0.5710 0.5934 0.5665 0.5915 

Distance 50 km 50 km 50 km 50 km 50 km 50 km 

Panel Var State State State State State State 

Notes: All models include month fixed effects, and Conley standard errors. Significance denoted by: *** p<0.01, ** 

p<0.05, *p<0.1 
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Table 22: Water Source and Injection/Disposal Wells 

VARIABLES Model 1 Model 2 Model 3 Model 4 

SQFT 0.0003*** 0.0003*** 0.0003*** 0.0003***  
(0.0000) (0.0000) (0.0000) (0.0000) 

MANU -0.318*** -0.3175*** -0.4558*** -0.2254***  
(0.0600) (0.0600) (0.0852) (0.0759) 

AGE -0.0059*** -0.0059*** -0.0060*** -0.0055***  
(0.0005) (0.0005) (0.0008) (0.0005) 

LOTACRES 0.0002 0.0002 0.0002 0.0002  
(0.0001) (0.0001) (0.0002) (0.0002) 

BEDROOMS 0.0493*** 0.0492*** 0.0553* 0.0610***  
(0.0169) (0.0169) (0.0313) (0.0179) 

MULTI-GARAGE 0.0766*** 0.0765*** 0.0099 0.1713***  
(0.0213) (0.0213) (0.0339) (0.0241) 

ACCENTRAL 0.121*** 0.1210*** 0.0933** 0.1709***  
(0.0258) (0.0258) (0.0454) (0.0261) 

AVG-UE -0.0966*** -0.0966*** -0.2110*** -0.0592***  
(0.0265) (0.0265) (0.0610) (0.0226) 

DIST 0.0061*** 0.0061*** 0.0065** 0.0039  
(0.0023) (0.0023) (0.0025) (0.0041) 

MED-HINC 0.0014*** 0.0015*** 0.0031*** 0.0018***  
(0.0005) (0.0005) (0.0009) (0.0004) 

POP-DENS -0.0058*** -0.0058*** -0.0091*** -0.0029**  
(0.0012) (0.0012) (0.0033) (0.0012) 

PCT-WHITE 0.0069*** 0.0069*** 0.0096*** 0.0036*** 

 (0.0010) (0.0010) (0.0021) (0.0010) 

PUBWATER 0.0484*** 0.0507*** 0.0562* 0.0364* 

 (0.0178) (0.0182) (0.0323) (0.0204) 

PERMIAN -0.270*** -0.2696***   

 (0.0301) (0.0301)   
INJ&DISP-2KM -0.0027*** -0.0013 -0.2103* -0.0016 

 (0.0010) 

(0.0017) (0.1229) (0.0017) 

PUBWATER *  

INJ&DISP-2KM 
 -0.0020 0.1785 -0.0017 

 

(0.0020) (0.1271) (0.0021) 

Constant 11.63*** 11.6262*** 11.6668*** 11.4813*** 

 (0.1377) (0.1377) (0.2414) (0.1158) 

Observations 5,767 5,767 2,165 3,602 

Subset All All Controls Permian 

R-squared 0.6623 0.6624 0.6352 0.6804 

VIF>10 No No Yes No 

Notes: All include month fixed effects, and robust standard errors clustered by block group. 

Significance denoted by: *** p<0.01, ** p<0.05, *p<0.1 
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11. Appendices 

 

Appendix A: Control Counties Group Selection Process 

This appendix describes the selection process for choosing the set of counties as a control group, 

relative to those counties in the Permian Basin. Geographic location and the presence of oil and 

gas production activity define the Permian Basin. To account for areas not as exposed to 

production growth at the same magnitude as the basin, but sharing a similar socio-demographic 

profile, counties outside the Permian Basin are included to provide a pseudo-control category. 

The term pseudo-control is used because revenues from oil and gas benefit the whole state, so no 

county is immune to the effects of industry growth.  

Note that the hedonic pricing data is collected during 2022-2023; this data is web-scraped via a 

time-consuming process, and the control group had to be chosen ahead of time. So, broadly the 

objective was to pick a set of control counties that were not within the Permian boundaries, but 

still within the general region (i.e., roughly eastern NM and western TX), and were not exposed 

to O&G production at any comparable scale (i.e., an order of magnitude less), but were 

statistically similar over the prior decade on a set of five Census-based socio-

economic/demographic variables. In an iterative process all possible counties in the broader 

region were compared, and then from this selected the control group (i.e., similar on five socio-

economic demographic variables and dis-similar on exposure to O&G production). 

Counties within the Permian Basin are defined by the Federal Reserve Bank of Dallas’ map of 

the region (Energy in the Eleventh District, n.d.). There are 55 Permian Basin counties. The 51 

TX counties in the basin are: Andrews, Bailey, Borden, Cochran, Coke, Concho, Crane, 

Crockett, Crosby, Culberson, Dawson, Dickens, Ector, Edwards, Fisher, Floyd, Gaines, Garza, 

Motley, Schleicher, Scurry, Sterling, Sutton, Terrell, Terry, Tom Green, Upton, Val Verde, 

Ward, Winkler, Yoakum, Glasscock, Hale, Hockley, Howard, Irion, Kent, Kimble, Lamb, 

Loving, Lubbock, Lynn, Martin, Menard, Midland, Mitchell, Nolan, Pecos, Reagan, Real, and 

Reeves. The four NM counties in the basin are: Chaves, Eddy, Lea, and Roosevelt. 

The geographic region control counties were selected from is limited to those in Eastern NM 

which we defined as east of and including counties crossed by Interstate 25. In TX, the counties 

were limited to those in specific production districts as defined by the Texas Railroad 

Commission (RRC) to limit the region to what is roughly the western part of Texas (RRC, 2020). 

The districts included for selection are 1, 7B, 7C, 8, 8A, and 1026. The selection region covering 

NM and TX is outlined in red in the map in Figure 1a.  

The control counties were selected from the red outlined area to create a control group 

statistically similar to the Permian Basin counties on five variables: unemployment rate, per 

capita income, median household income, population density, and the percentage of the 

population that is white. The American Community Survey (ACS) for 2009 and 2019 

synthesized by IPUMS at the county level was used to collect each of the five variables (Mason 

et al., 2022).  

 
26 https://www.rrc.texas.gov/media/3bkhbut0/districts_color_8x11.pdf  

https://www.rrc.texas.gov/media/3bkhbut0/districts_color_8x11.pdf
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As shown in Table A1 panel A, for 2009, the data are statistically similar on four of the five 

variables. UE–2009 is statistically different between the Permian and control counties (6.8% 

versus 5.3%). As shown in Table A1 panel B, for 2019, the data matches on three of five 

demographic variables. PER–CAP–INC–2019 ($25.4K versus $27.9K) and PCT–WHITE–2019 

(83% versus 89%) are statistically different between the two regions based on t-tests of the 

difference in the group means. So, even where there are differences, they were of similar 

magnitude relative to alternatives (e.g., the much more urban areas). 

Comparison of the production levels is based on production amounts from November of 2022 as 

the data could be obtained at the county level for both states. As shown in Table A1, panel C, 

both raw production numbers and the percentile of the production are compared. Using a t-test 

allowing for unequal variances, we reject the null hypothesis that the production means are the 

same. For these variables statistical difference is a positive outcome as the control group 

represents counties that are not nearly as exposed to oil and gas production to the extent of 

Permian Basin counties. For each measure, we observe at least an order of magnitude difference 

between the Permian Basin and the control group counties. 

In combination, based on the statistical comparisons of 2009 and 2019 socio-

economic/demographic data and 2022 production data, the 16 TX control counties are 

Armstrong, Bandera, Blanco, Brewster, Castro, Comanche, Dallam, Deaf Smith, Gillespie, 

Hamilton, Jeff Davis, Lampasas, Llano, Mills, Parmer, and Taylor. The two New Mexico control 

counties are Doña Ana and Curry counties. The counties are shown in the map below in blue. 

Note that the selection generally leaves out counties that would be part of large metropolitan 

areas: i.e., Albuquerque, NM, Amarillo, TX, Austin, TX, El Paso, TX, and San Antonio TX.  
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Figure A1: Map of Selection Region, Permian Basin, and Control Counties 
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Table A1: Summary Statistics and t-Test Results 

 

 Permian Control  

Panel A:  

2009 Demographic Data 

Variable N Mean SD N Mean SD t-test 

UE–2009  55 0.068 0.016 18 0.053 0.009 4.9754* 

PER–CAP–INC–2009 55 20,960.04 5,095.75 18 20,974.33 3,801.38 -0.0109 

MED–HH–INC–2009 55 40,704.82 8,793.05 18 40,876.72 6,881.34 -0.0756 

POP–DENSITY–2009 55 24.786 51.454 18 26.555 43.338 -0.1312 

PCT–WHITE–2009 55 0.841 0.075 18 0.866 0.089 -1.1961 

Panel B:  

2019 Demographic Data 

Variable N Mean SD N Mean SD t-test 

UE–2019  55 0.032 0.008 18 0.031 0.009 0.337 

PER–CAP–INC–2019 55 25,366.91 4,458.78 18 27,972.89 4,842.53 -2.1075* 

MED–HH–INC–2019 55 53,115.15 11,797.78 18 54,329.17 7,583.00 -0.5074 

POP–DENSITY–2019 55 28.074 60.072 18 28.822 47.142 -0.0481 

PCT–WHITE–2019 55 0.828 0.132 18 0.891 0.074 -2.5665* 

Panel C:  

2022 Production Data 

Variable N Mean SD N Mean SD t-test 

Raw Production 55 2,319,000 5,231,000 18 1,072.11 4,493.57 3.29* 

Percentile Production 55 0.653 0.279 18 0.061 0.133 12.07* 

 

Notes: * indicates statistical difference in the means at the 0.005 level. All comparisons were 

first tested for statistical differences in the standard deviations. Where applicable, the t-test 

adjusts for unequal variances.   
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